

March 29, 2013

Mr. Roy Crossland START Project Officer U.S. Environmental Protection Agency-TLC 8600 NE Underground Drive, Pillar 253 Kansas City, Missouri 64161

Subject:

Removal Action Report

Radiation - Standard Precision, Inc. (Former), Wichita, Kansas

CERCLIS ID KS0000900316

U.S. EPA Region 7 START 3, Contract No. EP-S7-06-01; Task Order No. 0303

Task Monitor: Megan Schuette, On-Scene Coordinator

Dear Mr. Crossland:

Tetra Tech, Inc. is submitting the attached Removal Action report for the Radiation – Standard Precision, Inc. (Former) site in Wichita, Kansas. If you have any questions or comments, please contact the Project Manager at (816) 412-1775.

Sincerely,

Robert Monnig, PE

START Project Manager

Ted Faile, PG, CHMM

START Program Manager

Enclosure

REMOVAL ACTION REPORT

RADIATION – STANDARD PRECISION, INC. (FORMER) WICHITA, KANSAS

CERCLIS ID KS0000900316

Superfund Technical Assessment and Response Team (START) 3 Contract No. EP-S7-06-01, Task Order No. 0303

Prepared For:

U.S. Environmental Protection Agency Region 7 11201 Renner Boulevard Lenexa, Kansas 66219

March 29, 2013

Prepared By:

Tetra Tech, Inc. 415 Oak Street Kansas City, Missouri 64106 (816) 412-1741

CONTENTS

Section	<u>Page</u>
1.0	INTRODUCTION
2.0	SITE DESCRIPTION AND BACKGROUND
	2.1SITE DESCRIPTION22.2PREVIOUS INVESTIGATIONS2
3.0	REMOVAL ACTIVITIES4
4.0	3.1EXCAVATION AND ASSESSMENTS SUPPORTING REMOVAL ACTION
7.0	4.1DERIVED CONCENTRATION GUIDELINE LEVELS84.2SURVEY DESIGN84.3CONFIRMATION SAMPLING AND FINAL STATUS SURVEY104.4SURVEY RESULTS114.5STATISTICAL TESTS124.6ELEVATED MEASUREMENT COMPARISON12
5.0	EVALUATION OF SUBSURFACE DATA
6.0	SUMMARY
7.0	REFERENCES
	APPENDICES
Appen	<u>dix</u>
A	FIGURES
В	PHOTOGRAPHIC RECORD
C	FIELD NOTES
D	TABULATED LABORATORY DATA
E	DATA SUPPORTING EMC TESTS
F	LABORATORY DATA

CONTENTS (Continued)

TABLES

<u>Table</u>		Page
1	SUMMARY OF CLASS 1 SURVEY UNIT AND REFERENCE AREA DATA	12
2	SITE-SPECIFIC AREA FACTORS AND DCGL _{EMC} VALUES	14
3	ELEVATED MEASUREMENT COMPARISONS	15
4	SUMMARY OF SUMP AREA SUBSURFACE SOIL RESULTS	16

1.0 INTRODUCTION

The Tetra Tech, Inc. Superfund Technical Assessment and Response Team (START) was tasked by the U.S. Environmental Protection Agency (EPA) Region 7 Superfund Division to assist with a removal action (RA) at Radiation – Standard Precision, Inc. (Standard Precision) in Wichita, Sedgwick County, Kansas. The site was the location of the Standard Precision, Inc., facility that was granted a radioactive material license and operated until approximately 1968 (Kansas Department of Health and Environment [KDHE] 2007). An investigation at the site by KDHE, reported in March 2007, identified radium-226 impacted soil at the former Standard Precision site (KDHE 2007). Follow-up removal assessments by EPA identified radium-226 contamination in soils and elevated gamma readings in the interior of the on-site building near a loading dock (Tetra Tech EM Inc. [Tetra Tech] 2010). Based on information obtained during those investigations, EPA determined that a hazardous substance was present at levels that posed an imminent threat to human populations, thereby warranting a time-critical RA.

START activities for this RA included:

- Guiding excavation of radium-impacted soil and materials
- Conducting perimeter air monitoring for particulates and airborne radioactive material during soil excavation
- Conducting a Final Status Survey (FSS) in accordance with the *Multi-Agency Radiation Survey* and *Site Investigation Manual* (MARSSIM) (EPA 2000a), including acquisition of real-time monitoring data and collection of post-removal samples for laboratory analysis for radionuclides
- Assessing FSS data, in accordance with MARSSIM, to determine if areas could be released for unrestricted use
- Documenting the removal activities.

Robert Monnig was the START Project Manager for the RA, and Megan Schuette was the EPA On-Scene Coordinator (OSC) for the project.

2.0 SITE DESCRIPTION AND BACKGROUND

Section 2.0 describes the site, summarizes previous investigations, and cites the EPA-specified RA level for radium-226.

2.1 SITE DESCRIPTION

The former Standard Precision facility was at 4105 West Pawnee in Wichita, Sedgwick County, Kansas (see Appendix A, Figures 1 and 2). The site is in the northeast quarter of Section 2, Township 28 South, Range 1 West. The approximate center of the site is at the following coordinates: 37.650780 degrees north latitude and 97.392100 degrees west longitude. The 4105 West Pawnee property encompasses approximately 4 acres and currently includes a large manufacturing and a smaller building with footprints of approximately 32,800 and 5,000 square feet, respectively. The property is currently occupied by Consolidated Equipment Company, Inc., (CECO), an aircraft parts fabricator.

2.2 PREVIOUS INVESTIGATIONS

KDHE performed a Unified Focus Assessment (UFA) at the Standard Precision site in 2007. A screening survey and soil sampling of the property by KDHE identified several discrete areas of radium-226 impacted soil (KDHE 2007). In addition, groundwater samples were collected from Geoprobe[®] locations on the Standard Precision property to the south of the CECO manufacturing building. An elevated concentration of radium-226 (26.1 picoCuries per liter [pCi/L]) was detected in groundwater collected from a location near a suspected buried sump. In addition, volatile organic compounds (VOC) were detected at concentrations exceeding heath-based benchmarks, including benzene, 1,1-dichloroethane, tetrachloroethylene, toluene, 1,1,1-trichloroethane, trichloroethylene, 1,3,5-trimethylbenzene, and 1,2,4-trimethylbenzene (KDHE 2007).

Several site investigations preceded the 2006/2007 UFA. These investigations are described in the KDHE UFA report and are summarized below (KDHE 2007).

1994 Preliminary Assessment/Screening Site Inspection (PA/SSI) of K42 and West Street Site In 1994, KDHE conducted an integrated PA/SSI for the K42 and West Street site in Wichita, Kansas. The K42 and West Street site is located to the southeast of the former Standard Precision site. Groundwater at the K42 and West Street site was contaminated with aromatics, semi-volatiles, and VOCs. The PA/SSI concluded the property occupied by CECO, Inc. and formerly occupied by Standard Precision, located upgradient to the K42 and West Street site, was the likely source area for the groundwater contamination at the K42 and West Street site.

1996 Preliminary Investigation (PI) of Standard Precision Site

In 1996, Woodward-Clyde Consultants, under contract with National Cash Register Corporation (a former lessee of the Standard Precision property), conducted a PI of the Standard Precision property. The PI concluded that a former sump located south of the 4125 West Pawnee building loading dock appeared to be a source of groundwater contamination at the K42 and West Street site.

2000 Expanded Site Inspection (ESI) of K42 and West Street Site

In February 2000, KDHE conducted an ESI of the K42 and West Street site and concluded that the likely upgradient source for the western plume of groundwater contamination at the K42 and West Street Site was the former Standard Products facility. Contaminants in the groundwater plume included trichloroethylene, 1,1,1-trichloroethane, 1,1-dichloroethane, and total (cis/trans) 1,2-dichloroethylene. During the ESI, Mr. M.J. "Buddy" Edwards III of CECO, Inc. reportedly indicated in an interview with the KDHE field team that the former sump on the Standard Precision property was backfilled in 1990 during a sewer connection project and lies under a portion of concrete paving near the loading dock.

2005 Limited Site Investigation of Standard Precision Site

In 2005, Terracon (on behalf of CECO, Inc.) conducted a Limited Site Investigation the 4105 and 4125 West Pawnee property (former Standard Precision facility) assessing the presence of radium. High concentrations of radium-226 were found in the soils and groundwater on the former Standard Precision site, especially near the former sump area.

In February 2009, EPA tasked START to conduct a Removal Site Evaluation (RSE) to determine the extent of radium contamination (and associated radionuclides) in surface and subsurface soils at the former Standard Precision facility. RSE activities at the site in March 2009 included a surface soil gamma survey and collection of surface and subsurface soil samples. During the RSE activities, areas with total gamma radiation readings above background were identified at several areas of the site (see Appendix A, Figure 3). Laboratory results indicated a maximum radium-226 detection of 39.4 picoCuries per gram (pCi/g) in a soil sample collected from a boring advanced at the northwest corner of the property (Tetra Tech 2010). Based on the results of investigations by KDHE and EPA/START, an RA was determined warranted to reduce the risk to occupants of the site. EPA established a time-critical RA level for radium-226 of 5 pCi/g above background in soil.

In November 2010, START installed and sampled twelve temporary direct-push technology (DPT) wells, including wells immediately downgradient (to the southeast) of the reported abandoned sump, wells downgradient (southeast) of the former Standard precision property, and wells upgradient/crossgradient (north) of the facility (Tetra Tech 2011). The November 2010 groundwater sampling results suggest that groundwater impacted with VOCs was migrating off the facility, while radium-226 impacts to groundwater appear to be limited to a localized area near the reported sump location. START noted that, although VOCs were detected in groundwater samples collected downgradient of the former Standard Precision facility, groundwater in this area was not likely used as a drinking water source because the City of Wichita provides municipal water service to this area.

3.0 REMOVAL ACTIVITIES

In July and August 2012, excavation of radiologically impacted material and site restoration for this RA proceeded under the EPA Region 7 Emergency Response and Removal Services (ERRS) contract. The EPA ERRS contractor was Environmental Restoration (ER). Photographic documentation of the removal activities is in Appendix B. Field activities for the RA are documented in a field logbook, in Appendix C.

3.1 EXCAVATION AND ASSESSMENTS SUPPORTING REMOVAL ACTION

START arrived at the site on July 25, 2012, and began surveying proposed excavation areas for gross gamma activity using a Ludlum Model 2241-3 digital survey meter with a Ludlum Model 44-10 sodium iodide (NaI) scintillation detector (Ludlum 44-10 detector). Real-time surveying occurred by scanning the surface soil in a serpentine pattern, moving at approximately 1 to 2 feet per second, with the detector held approximately 6 inches above ground surface. These scanning measurements were used to guide the excavation of impacted material. The ERRS contractor excavated impacted material using a track-mounted hoe and hand shovels. Excavation of contaminated areas generally proceeded until gross gamma activity readings using the Ludlum 44-10 detector suggested that the EPA-established action level for radium-226 of 5 pCi/g above background had been achieved. In addition, measurements of soil samples in a shielded "well" composed of lead bricks provided additional information used to guide the excavation. EPA conducted these measurements.

The cleanup resulted in excavation at several areas of the property (see Appendix A, Figures 4 and 5). The following describes the areas excavated:

<u>Area 1 – Northwest Corner of Property</u>

A small discrete area with elevated gamma activity within a grass-covered area at the northwest corner of the property (see Appendix A, Figure 5) was excavated using a track-mounted hoe. Soil removal proceeded until gross gamma activity readings suggested the action level had been achieved, resulting in an approximately 5-foot-diameter excavation of approximately 6 inches in depth.

Area 2 – Interior Area and Exterior Pipe Run

This area is associated with an abandoned waste pipe that had apparently served an unknown and previously removed drain or fixture in the CECO building (4105 West Pawnee) (see Appendix A, Figure 4). During the RSE, a discrete area of elevated gamma readings had been observed along the concrete floor at the south side of the building near a loading dock; the elevated gamma readings generally extended along a line that exited the building and continued along the west edge of the loading

dock ramp. During the RA, an approximately 6.5- by 12-foot portion of concrete floor over the interior area of elevated gamma activity was removed. Removal of the concrete floor revealed a remnant portion of an unknown reinforced concrete structure that had been possibly served by the drain (see Appendix B, Photographs 1-3). The rectangular remnant structure still included a concrete base of approximately 4 by 6 feet and sides that had been mostly broken off and removed so that the building floor could be patched level. The structure was covered in sand that likely had been placed to fill void space when the floor had been patched. A strong solvent odor was detected after exposure of the structure. Elevated gamma readings appeared to be associated with the sand fill covering the remnant structure and soil adjacent to the structure; this material was excavated using a track-mounted hoe and hand tools. Removal of fill material around the structure proceeded until gross gamma activity readings over the area suggested that the EPA-established action level for radium-226 of 5 pCi/g above background (action level) had been achieved. The exterior buried pipe run was removed by cutting and excavating an approximately 18 inchwide trench from the building (where the pipe exited) south to the sump excavation area—a length of approximately 37 feet (see Appendix B, Photograph 8). Elevated gamma readings appeared to be associated primarily with the waste pipe, and only limited fill material adjacent to the pipe had to be removed to obtain gross gamma activity readings with the Ludlum 44-10 that suggested the action level had been achieved.

Areas 3 and 4 – Area Abutting South Side of Detached Garage

An area of concrete sidewalk and grass lawn off the south side of the detached garage (see Appendix B, Photograph 7 and Appendix A, Figure 4) was excavated to a depth of approximately 8 to 12 inches using a track-mounted hoe. This area was identified as two discrete areas (Areas 3 and 4) during the RSE; however, excavation of an approximately 500-square-foot contiguous area was required to achieve gross gamma readings suggesting the action level had been achieved. To accomplish removal in this area, an approximately 30-foot length of concrete sidewalk that abutted the south edge of the detached garage had to be removed.

Area 5 – Small Discrete Area on South-Central Portion of Property

A small discrete area with elevated gamma activity within a grass-covered area in the south-central portion of the property (see Appendix A, Figure 4) was excavated using a track-mounted hoe. Soil removal proceeded until gross gamma activity readings suggested the action level had been achieved, resulting in an approximately 4-foot-diameter excavation to depth of approximately 1.5 feet.

Area 6 – Multiple Discrete Areas Along South Edge of Property

Multiple small discrete areas with elevated gamma activity along the south-central edge of the property boundary (see Appendix A, Figure 4 and Appendix B, Photographs 4 and 5) were excavated using a track-mounted hoe. Soil removal proceeded until gross gamma activity readings suggested the action level had been achieved, resulting in three discrete excavations of approximately 100 to 120 square feet to depths of 2 to 3 feet.

Sump Excavation

This area encompasses an excavation off the southwest corner of the loading ramp associated with an abandoned sump apparently formerly tied to the waste pipe removed from Area 2 (see Appendix A, Figure 4). Upon excavation of the waste pipe from Area 2, it was observed that the pipe terminated near the south end of the loading ramp, but that soil continued to exhibit elevated gross gamma readings. Excavation proceeded past where the pipe terminated and ultimately resulted in an approximately 12- by 15-foot excavation area off the southwest corner of the loading ramp. Excavation uncovered an abandoned concrete sump at a depth of approximately 3 to 4 feet below ground surface (bgs). The sump and surrounding soil exhibited elevated gross gamma readings and were removed. Elevated gross gamma readings in soil continued to trend to greater depth and in a southerly direction from the location where the sump had been unearthed. Excavation proceeded to a maximum depth of approximately 10 feet bgs. Gross gamma activity readings along the north, east, and west walls and the upper portion of the southern wall of the excavation suggested the action level had been achieved; however, elevated gross gamma readings remained along the south, bottom edge of the excavation that had reached a depth of approximately 10 feet bgs. Excavation was discontinued when it appeared that the remaining soil associated with elevated gross gamma readings was limited to a relatively deep seam of soil (at depth of approximately 8 to 10 feet bgs) which possibly continued to the south and to greater depth. Because elevated gross gamma readings remained, orange construction fencing was laid over the bottom of the excavation to provide a demarcation of the final extent of excavation (see Photograph 15).

Excavation activities were completed on August 3, 2012. Excavated materials were transported by truck to a staging area at 650 East Gilbert Street, Wichita, Kansas, the location of another EPA-led removal action involving radium contamination. At this location, the material was staged, then loaded onto rail cars, and transported by rail to the EnergySolutions disposal facility near Clive, Utah.

3.2 AIR MONITORING

During the excavation activities, EPA and START conducted air monitoring to measure airborne concentrations of radioactive material using RADeCO® Model H-810 high-volume air samplers and a Ludlum® Model 3030 Alpha/Beta Sample Counter. Air samplers positioned near excavation activities ran continuously during those activities. Paper filter samples were collected each day from the samplers and analyzed for radiological contamination by START and EPA using the Ludlum® Model 3030 Alpha/Beta Sample Counter. Based on the measurements obtained from the filter samples, exposure rates did not exceed applicable health-based action levels.

3.3 SITE RESTORATION

The excavated areas were backfilled with soil. START screened the backfill material for gross gamma activity with the Ludlum 44-10 NaI detector and obtained readings consistent with background activity. A sample was collected from the soil backfill and submitted to TestAmerica in Earth City, Missouri, for analyses for VOCs via EPA Method 8260B, semivolatile organic compounds via EPA Method 8270C, Resource Conservation and Recovery Act metals via EPA Methods 6010B and 7471A, and radionuclides via gamma spectroscopy. No analyte concentration in the soil sample exceeded the most stringent KDHE Tier 2 risk-based cleanup values for residential scenarios established in *Risk-Based Standards for Kansas RSK Manual* – 5th Version (KDHE 2010). A summary of the analytical data is in Appendix D – Table D-1. The complete analytical laboratory report is in Appendix F.

3.4 POST-EXCAVATION GAMMA SURVEY

On November 7, 2012, a post-excavation gamma survey occurred using a Ludlum Model 44-20 NaI scintillation detector and the Rapid Assessment Tool Software (RATS) system to obtain the survey data. RATS is a software program developed by the EPA Region 5 Field Environmental Decision Support (FIELDS) Team that integrates real-time data from global positioning system (GPS) software and environmental monitoring devices. RATS stores the sample data with the GPS locations in a file and plots the results on a dynamic, two-dimensional display in real time. To conduct the survey, the surveyor walked over the excavated areas in a forward direction at 1 to 2 feet per second while swinging the detector back and forth, and holding the detector approximately 6 inches above the ground, thus generally covering a serpentine pattern over the ground surface. Figure 6 in Appendix A presents the post-excavation gamma survey results.

4.0 FINAL STATUS SURVEY

A final status survey (FSS) is performed to demonstrate that residual radioactivity in a specified area satisfies predetermined criteria for release for unrestricted use, or where appropriate, for use with designated limitations. EPA has established a time-critical RA level for radium-226 of 5 pCi/g above background in surface soil (Tetra Tech 2012). This time-critical RA level was based on surface soil cleanup standards developed under the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, as specified in 40 *Code of Federal Regulations* (CFR) Part 192. Note that evaluation of subsurface contamination is outside the scope of MARSSIM. Data obtained during the RA pertaining to subsurface conditions is discussed in Section 5.0.

4.1 DERIVED CONCENTRATION GUIDELINE LEVELS

The FSS provides data to compare to derived concentration guideline levels (DCGL). The DCGLs are radionuclide-specific concentrations derived from the criterion for release of the site for unrestricted use (referred throughout as "release criterion"). MARSSIM defines two categories of DCGLs based on the area of contamination. If the residual radioactivity is evenly distributed over a large area, MARSSIM looks at the average activity over the entire area. This DCGL—called the DCGL_w— is derived based on an average concentration over a large area (or "wide" area), and is used in the statistical tests described in MARSSIM. Conversely, if the residual radioactivity appears as small areas of elevated activity (i.e., hot spots) within a larger area, MARSSIM considers the results of individual measurements. This DCGL—called the DCGL_{EMC}—is defined as the DCGL used for the elevated measurement comparison (EMC). Typically, specific DCGL_{EMC} values are derived using site-specific parameters for the specific area of concern. MARSSIM describes an elementary relationship between the DCGLs: the DCGL_{EMC} equals the DCGL_w times an area factor. The area factor is the magnitude by which the concentration within a small area of elevated activity (i.e., a hot spot) can exceed the DCGL_w while maintaining compliance with the release criterion.

4.2 SURVEY DESIGN

This section summarizes the survey design parameters defined in the *Final Status Survey Sampling Design Plan* developed for the site and included in the Quality Assurance Project Plan (QAPP) (Tetra Tech 2012), and describes deviations from the QAPP.

Residual Radioactivity Limits

The survey was designed to provide post-excavation data to demonstrate that all radiological parameters do not exceed the established DCGL_W plus background. The DCGL_W at the site was 5 pCi/g for radium-226 in surface soil. Again, under MARSSIM, the DCGL_W refers to the level of radioactivity above appropriate background levels; therefore, the numerical value of the DCGL_W does not include background activity (EPA 2000). Although the survey was designed to provide data that could be compared directly to the DCGL_W, an alternative method of comparison—the "elevated measurement comparison" (which uses DCGL_{EMC} values derived from DCGL_W values)—was considered a more relevant method of comparison for areas of the site where relatively small excavation areas resulted from the cleanup. This consideration is discussed further in Section 4.4.

Survey Units

Based on the results of real-time surveying before and during the excavation activities, six discrete areas were classified as Class 1 survey units. This RA included excavation of contaminated material within those survey units. In addition, the unexcavated surface immediately surrounding each excavation was treated as a Class 3 survey unit.

During the RA, six Class 1 survey units were designated:

- **Area 1 Class 1 Survey Unit** An approximately 20-square-foot area at the northwest corner of the property where radium-impacted soil was identified and removed.
- Area 2 Class 1 Survey Unit Approximately 130 square feet that included the interior area in the 4105 West Pawnee building where concrete flooring and radium-impacted sand and soil were removed. Also, this survey unit included the exterior area trench dug to remove the waste pipe run.
- **Area 3 & 4 Class 1 Survey Unit** An approximately 500-square-foot exterior area south of the detached garage where radium-impacted soil was identified and removed.
- **Area 5 Class 1 Survey Unit** An approximately 13-square-foot area in the south-central portion of the property where radium-impacted soil was identified and removed.
- **Area 6 Class 1 Survey Unit** Approximately 360 square feet of excavated areas along the south-central edge of the property boundary.
- Area 7 Class 1 Survey Unit Approximately 108 square feet of soil exposed during the sump excavation—from ground surface to 2 feet bgs. Because MARSSIM does not address subsurface contamination, data associated with soil deeper than 2 feet bgs are not evaluated using MARSSIM; but data regarding this soil are discussed in Section 5.0.

The ground surface immediately surrounding the Class 1 survey units was treated as a Class 3 survey unit.

Survey Instrumentation and Survey Techniques

Real-time monitoring of surface soils for gross gamma activity occurred using a Ludlum Model 2241-3 digital survey meter with a Ludlum Model 44-10 NaI scintillation detector. Real-time surveys proceeded by scanning the surface soil in a serpentine pattern moving at approximately 1 to 2 feet per second, with the detector held approximately 6 inches above ground surface.

Reference Areas

Because radium-226 is naturally occurring, background concentrations were established by collecting background samples from a reference area. For this survey, seven background soil samples were used to evaluate background concentrations (see Appendix A, Figure 5).

Reference Coordinate System

Per MARSSIM guidance, if the survey unit area is relatively small (less than 100 square meters), the statistical tests prescribed in MARSSIM may suggest obtaining a number of data points that would be unnecessarily large and not appropriate for the size of the survey unit (EPA 2000). Because the excavated areas were relatively small (the largest survey unit, the Areas 3 & 4 Class 1 survey unit, was approximately 500 square feet [or 47 square meters]), the number of samples collected was based on judgment, rather than on statistical techniques presented in MARSSIM; therefore, a reference coordinate system was not needed to establish grid spacing. Descriptions of individual sample locations are documented in field notes (see Appendix C).

4.3 CONFIRMATION SAMPLING AND FINAL STATUS SURVEY

An FSS was conducted using MARSSIM guidance (EPA 2000) and the FSS sampling design plan developed in the QAPP (Tetra Tech 2012). The FSS included both a final real-time surface scanning survey and collection of soil samples for laboratory analysis. Because MARSSIM guidance largely pertains to surveys over wide areas (generally 100 square meters or larger), deviation from the design plan and statistical analysis of the data was necessary due to the relatively small size of the remediated areas. The cleanup resulted in excavation of multiple discrete areas of the property, the largest being approximately 500 square feet (approximately 47 square meters). Deviations from MARSSIM guidance and the FSS sampling design plan are described throughout this report.

The final surface scan occurred to verify that no unknown areas of elevated activity remained following excavation. MARSSIM requires a 100-percent scan of soils within Class 1 survey units and a "judgmental" scan within Class 3 survey units. For this site, a 100-percent surface scan of surface soils was conducted within the Class 1 survey units (i.e., the excavated areas) and within the Class 3 survey unit (the unexcavated area surrounding the Class 1 survey units). During the final surface soil scanning, no measurements exceeding approximately twice background were obtained, suggesting that no areas of significantly elevated activity remained.

Following the final surface scan, soil samples were collected for laboratory analysis. Because the sizes of the Class 1 survey units (the excavated areas) were relatively small (each area was less than 100 square meters), the number and locations of samples collected were based on professional judgment, rather than on statistical techniques presented in MARSSIM. Descriptions of individual sample locations are documented in field notes (see Appendix C).

At each sampling location, a soil sample was collected, packaged in a labeled Ziploc® bag, and placed in a cooler. The collected samples were shipped to TestAmerica in Earth City, Missouri, for analysis for radionuclides via gamma spectroscopy. Table D-2 in Appendix D presents results of analyses for all targeted radioactive elements, and Appendix E provides the laboratory analytical reports.

4.4 SURVEY RESULTS

The summary statistics of the radium-226 soil sample data from the Class 1 survey units and the reference area are listed in Table 1. The average measurement in the surface soil survey units ranged from 1.4 to 7.0 pCi/g, and in the reference area the average was 1.1 pCi/g. Review of the data shows that maximum survey measurements in the Area 2, Areas 3 & 4, Area 5, and Area 6 Class 1 survey units did not exceed the DCGL_W (5 pCi/g) plus the average background (1.1 pCi/g)—indicating these survey units meet the release criterion. However, the maximum survey measurements in the Area 1 and Area 7 survey units exceeded the DCGL_W (5 pCi/g) plus the average background (1.1 pCi/g); therefore, further comparison of the data to the release criterion, including the DCGL_{EMC}, is necessary.

TABLE 1
SUMMARY OF CLASS 1 SURVEY UNIT AND REFERENCE AREA DATA RADIATION – STANDARD PRECISION (FORMER), WICHITA, KANSAS

Survey Unit	Number of Measurements	Radium-226 Measurements (picoCuries per gram)		
	Measurements	Minimum	Maximum	Average
Area 1	1	7.0	7.0	7.0
Area 2	14	0.356	4.79	1.4
Area 3 & 4	7	0.8	2.7	1.4
Area 5	1	1.55	1.55	1.55
Area 6	7	1.35	5.84	3.3
Area 7	15	0.473	12.0	2.9
Reference Area	7	0.69	1.5	1.1

Note:

Shaded values exceed the DCGL_W (5.0 pCi/g) plus the average background radium-226 concentration (1.1 pCi/g)

4.5 STATISTICAL TESTS

MARSSIM describes use of statistical methods (such as the Wilcoxon Rank Sum test) for interpreting FSS data. These statistical methods are designed to detect whether or not activity in the survey unit exceeds the $DCGL_W$. Because the $DCGL_W$ is a guideline level intended for comparison to measurements from survey units of large areas of evenly distributed residual radioactivity, these statistical methods are less relevant to the Standard Precision FSS data (obtained from relatively small excavated areas) than are other methods of comparison. Therefore, a statistical test was not used to directly compare the Standard Precision FSS data to the $DCGL_W$.

4.6 ELEVATED MEASUREMENT COMPARISON

MARSSIM addresses the concern for small areas of elevated activity by using the "elevated measurement comparison"—an alternative to statistical methods whereby each survey measurement is compared to an investigation level called the $DCGL_{EMC}$. Typically, elevated measurements (i.e., measurements that exceed the $DCGL_{W}$) are deemed acceptable provided that the $DCGL_{EMC}$ is not exceeded. The $DCGL_{EMC}$ is the $DCGL_{W}$ modified to account for the reduction in dose (or risk) of smaller areas and is mathematically determined by multiplying the $DCGL_{W}$ by a correction factor called the area factor. The area factor is equal to the magnitude by which the concentration within the small area of elevated activity can exceed the $DCGL_{W}$ while maintaining compliance with the release criterion. Thus, area factors are specific to (1) the size of the elevated area of activity under evaluation, and (2) the underlying exposure assumptions used to determine the $DCGL_{W}$. MARSSIM states that this approach "is a defensible

modification because the exposure assumptions (e.g., exposure time and duration) are the same as those used to develop the $DCGL_W$ " (EPA 2000).

MARSSIM provides an illustrative example for generating area factors for outdoor areas (see MARSSIM, Section 5.5.2.4). In the MARSSIM example, the guidance describes using modeling software to calculate dose rates for various smaller area sizes (e.g., 1, 3, 10, 30, 100, 300, 1,000, and 3,000 square meters $[m^2]$) and then dividing these resulting dose rates by the dose rate that corresponds to the "wide area" size used to calculated the DCGL_W (10,000 m² in the example). These relative dose rates are the area factors. Thus, in this example, the area factor is equal the ratio of the smaller area dose rate to the dose rate of the larger area (the "wide area") used to determine the DCGL_W. Using this general approach, area factors were developed for the Standard Precision site via the following steps:

- 1. The external gamma exposure pathway was selected as the modeled pathway for calculating the area factors for the site; this approach involves specification of the DCGL_W as 5 pCi/g because that was the surface soil cleanup criterion for radium-226 developed for cleanup of radiation-contaminated soil under the UMTRCA of 1978, as found in 40 CFR Part 192. According to a 1998 EPA memorandum, the purpose of this criterion was to limit the risk from inhalation of radon decay products in houses built on mine tailings, and to limit gamma radiation exposure to people using contaminated land (EPA 1998). This memorandum further explains that the concentration criterion for surface soil (5 pCi/g of radium-226) is a health-based standard and is based on exposure to gamma radiation. Because the DCGL_W is based on the UMTRCA cleanup criterion of 5 pCi/g of radium-226, and this criterion is based on gamma radiation exposure, the external gamma exposure pathway is evaluated for the purpose of determining area factors.
- 2. Data for evaluating risks from external gamma radiation within areas of various sizes is obtained from the document *Ratios of Dose Rates for Contaminated Slabs* (Eckerman 2007). This document presents calculated ratios of dose rates from various radionuclides, including radium-226, for external gamma exposure over contaminated slabs of various sizes relative to the dose rate over a contaminated slab of infinite size (an infinite ground plane source). A copy of this document is in Appendix E. Ratios for the radionuclide "Ra-226+D" specified in the document constitute the basis for calculating the area factors, and are shown in the first column of Table E-1 in Appendix E. The "+D" notation indicates that the calculated ratios account for exposure to progeny (daughters) of radium-226. The ratios of dose rates from Eckerman are plotted in Figure E-1 of Appendix E, and a best-fit-line to the data within a region of interest allows interpretation of additional ratios for other slab sizes from the data.
- 3. As shown in Table E-1 in Appendix E, ratios of dose rates expressed in terms relative to an infinite ground source are converted to ratios relative to a 10,000 m² ground plane source. This size ground plane source (10,000 m²) represents the size of the "wide area"—it was selected in absence of any specific assumptions known to establish the UMTRCA cleanup criterion, and because this slab size is commonly used as a default slab size in risk-based calculations (this is the slab size used in the MARSSIM example and is the default slab size used in EPA's calculator for preliminary remediation goals [PRG] for radionuclides [EPA 2013]).

- 4. The inverse of the dose ratios (relative to a 10,000 m² ground place source) are calculated, and these values equal the area factors corresponding to the various slab sizes (see fourth column of Table E-1 in Appendix E).
- 5. DCGL_{EMC} values are calculated for the various slab sizes by multiplying the associated area factor by the DCGL_W of 5.0 pCi/g (see fifth column of Table E-1 in Appendix E).

Table 2 lists DCGL_{EMC} values calculated using the preceding steps for slab sizes between 3 and 10.000 m^2 .

TABLE 2 SITE-SPECIFIC AREA FACTORS AND DCGL $_{\rm EMC}$ VALUES RADIATION – STANDARD PRECISION (FORMER), WICHITA, KANSAS

Slab Size (m²)	Area Factor (unitless)	DCGL _{EMC} (pCi/g)
3	10.2	51
10	4.06	20
20	3.15	15
50	2.17	11
100	1.81	9.0
500	1.34	6.7
1,000	1.22	6.1
2,000	1.13	5.7
5,000	1.05	5.2
10,000	1.00	5.0

Notes:

 $\begin{array}{ll} DCGL_{EMC} & \quad Derived \ concentration \ guideline \ level \ for \ elevated \ measurement \ comparison \end{array}$

m² Square meter

pCi/g picoCuries per gram

To conduct the elevated measurement comparison, a relevant DCGL $_{EMC}$ among those determined for various areas of elevated activity (i.e., for the various slab sizes) must be selected and then compared to the specific elevated measurement under evaluation. Table 3 shows the elevated measurement comparisons for the Area 1 and Area 7 survey units (the surface soil survey units with measurements exceeding the DCGL $_{W}$ plus the average background), and identifies the basis for selection of the relevant DCGL $_{EMC}$.

TABLE 3

ELEVATED MEASUREMENT COMPARISONS
RADIATION – STANDARD PRECISION (FORMER), WICHITA, KANSAS

Survey Unit	Area of Elevated Activity and Basis of Estimation	Elevated Radium-226 Measurement(s) (pCi/g)	Relevant DCGL _{EMC} Selected from Table 2 (pCi/g)	Result of Comparison to Relevant DCGL _{EMC}
Area 1 (small discrete area at northwest corner of property)	No larger than the excavated area (a circular area approximately 5 feet in diameter), which corresponds to an area of approximately 20 ft ² (or 1.8 m ²).	7.0	51	Elevated measurement associated with small area of activity does not exceed the relevant DCGL _{EMC}
Area 7 (near surface soil exposed by sump excavation)	No larger than the total area of a 2-foot-wide boundary surrounding the approximately 12- by 15-foot sump excavation ¹ , which corresponds to an area of approximately 124 ft ² (or 11.5 m ²).	6.98 12.0	15	Elevated measurements associated with small area of activity do not exceed the relevant DCGL _{EMC}

Notes:

DCGL_{EMC} Derived concentration guideline level for elevated measurement comparison

ft² Square feet
m² Square meter
pCi/g picoCuries per gram

Based on the above elevated measurement comparison, no measurements in the survey units exceed relevant $DCGL_{EMC}$ values, indicating the site is in compliance with the release criterion.

5.0 EVALUATION OF SUBSURFACE DATA

As described in Section 3.1, excavation of soil in the sump area discontinued when soil had been excavated to a maximum depth of approximately 10 feet bgs. Measurements with a Ludlum 44-10 detector indicated that some soil with elevated gross gamma readings remained in a relatively deep seam of soil along the south edge of the excavation (at depth of approximately 8 to 10 feet bgs), and possibly continued to the south and to greater depth. Before backfilling, several subsurface soil samples were collected from the sump excavation. Table 4 lists the radium-226 results from these soil samples.

¹ The area of a 2-foot-wide zone surrounding the excavation can be expressed as an area with dimensions of 19 by 16 feet less the area of the actual excavation (15 by 12 feet). That is $(19 \text{ feet})(16 \text{ feet}) - (15 \text{ feet})(12 \text{ feet}) = 124 \text{ ft}^2$.

TABLE 4

SUMMARY OF SUMP AREA SUBSURFACE SOIL RESULTS
RADIATION – STANDARD PRECISION (FORMER), WICHITA, KANSAS

Survey Unit	Approximate Depth (feet below ground surface)	Radium-226 Measurements (picoCuries per gram)
South 4	8-10	2.93
South 5	8-10	35.2
South 5 (laboratory duplicate)	8-10	34.8
West E	4	4.69
West F	4	1.12
East C	4	0.918
East D	4	2.51

One of the six subsurface samples exceeded a radium-226 measurement of 5 pCi/g—the EPA-established, time-critical RA level. However, this RA level is less relevant to subsurface soil concentrations because it is based on a surface soil cleanup criterion for radium-226 developed under the UMTRCA of 1978. As indicated in Section 4.6, the 5 pCi/g criterion is based on external gamma exposure from surface soil. Because soil and other dense materials attenuate gamma radiation, radiologically impacted soil is less likely to pose a risk of external gamma exposure if at a depth where it is less likely to be disturbed (and brought to the surface) and is shielded by overlying unimpacted soil. The post-excavation surface survey indicated gross gamma readings over the sump excavation area were consistent with background activity (see Appendix A, Figure 6).

EPA's Soil Screening Guidance for Radionuclides, indicates the only pathway typically of concern for radioactive contaminants in subsurface soil in a residential setting is migration of radionuclides to an underlying aquifer used as a drinking water source (EPA 2000b). This guidance further states that "consideration of the groundwater pathway may be eliminated if groundwater beneath or adjacent to the site is not a potential source of drinking water" (EPA 2000b). Groundwater beneath or adjacent to the Standard Precision facility is not likely a potential source of drinking water because the City of Wichita provides municipal water service in the area of the facility. Moreover, previous groundwater sampling indicated that radium-226 in groundwater is not likely migrating off the Standard Precision property at concentrations of concern (Tetra Tech 2011). This conclusion is supported by data from two groundwater samples collected in November 2010 approximately 60 feet south and downgradient of the abandoned sump along the south property line. These samples contained chlorinated VOC contaminants (likely from

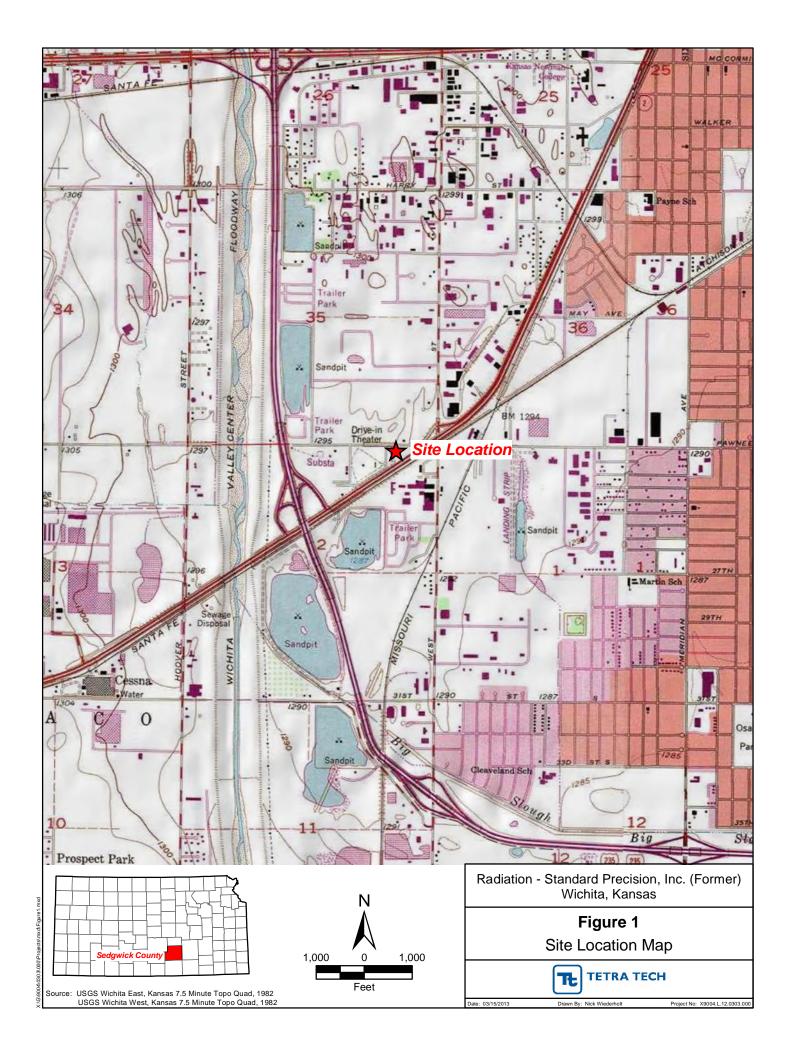
the abandoned sump), but did not contain radium-226 concentration above the maximum contaminant level (MCL) of 5 pCi/L (Tetra Tech 2011).

Overall, although some subsurface soil with radium-226 concentrations exceeding the EPA-established RA level of 5 pCi/g above background (an RA level based on surface soil cleanup criterion from UMTRCA), its extent and depth reduce the likelihood of external gamma exposure. Moreover, previous groundwater sampling indicates that radium-226 is not likely migrating off the Standard Precision property at concentrations of concern.

6.0 SUMMARY

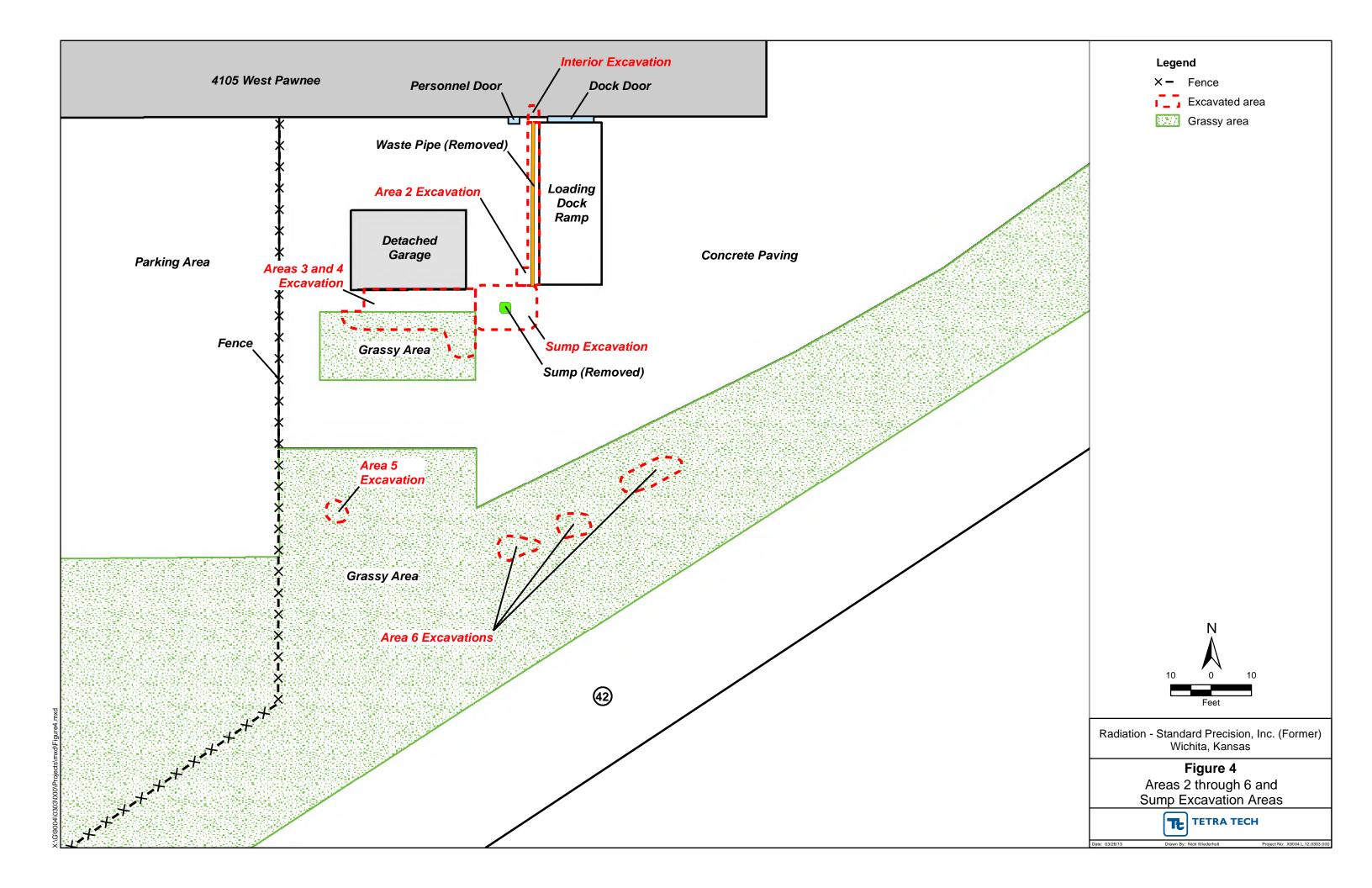
START was tasked by EPA to conduct RA support activities at the Standard Precision site in Wichita, Kansas. The site was the location of the Standard Precision, Inc., facility that was granted a radioactive material license and operated until approximately 1968 (KDHE 2007). Based on information obtained during previous investigations, EPA determined that radium-226 was present in soils at levels that posed an imminent threat to human populations, thereby warranting a time-critical RA. RA activities included excavation and off-site disposal of radium-226 impacted material, acquisition of real-time monitoring data, and completion of an FSS in accordance with MARSSIM to determine if survey units could be released for unrestricted use.

Removal activities for this site were conducted in July and August 2012, and a surface gamma survey occurred in November 2012 following completion of restoration activities. During the excavation, surface soils were continually scanned by START for gross gamma activity. Post-excavation soil samples were collected and submitted to TestAmerica for analysis via gamma spectroscopy. Laboratory analysis of the soil samples indicated several radium-226 measurements in surface soil that exceeded the DCGL_W (5 pCi/g) plus the average background (1.1 pCi/g). Therefore, further comparison of the data to the release criterion was necessary. During evaluation of the FSS data, a primary consideration was the relatively small size of the excavated areas. MARSSIM addresses the concern for small areas of elevated activity by using the "elevated measurement comparison"—an alternative to statistical methods whereby each survey measurement is compared to an investigation level called the DCGL_{EMC}. Typically, elevated measurements that exceed the DCGL_W are deemed acceptable provided that the DCGL_{EMC} is not exceeded. Therefore, evaluation of the survey data included deriving DCGL_{EMC} values and comparing these values to the survey data. This comparison showed that no surface soil survey unit measurements exceeded relevant DCGL_{EMC} values, indicating that the release criterion had been met. On this basis, the


FSS data and results of the elevated measurement comparison indicate that the surface soil at the site should be released for unrestricted use.

Subsurface contamination is outside the scope of MARSSIM; therefore, an alternative analysis occurred to evaluate data from subsurface soils samples collected from the sump area excavation. EPA's *Soil Screening Guidance for Radionuclides*, indicates the only pathway typically of concern for radioactive contaminants in subsurface soil in a residential setting is migration of radionuclides to an underlying aquifer used as a drinking water source (EPA 2000b). Considering this soil to groundwater pathway, it was noted that groundwater beneath or adjacent to the Standard Precision facility is not likely a potential source of drinking water (the City of Wichita provides municipal water service in the area of the facility), and moreover, that previous groundwater sampling had shown no indication that radium-226 in groundwater was migrating off the Standard Precision property at concentrations of concern (Tetra Tech 2011). Overall, although some subsurface soil associated with the former sump remains with radium-226 concentrations exceeding the EPA-established RA level of 5 pCi/g above background (an RA level based on surface soil cleanup criterion from UMTRCA), this soil is less likely to pose a health risk of significant concern because exposure to gamma radiation is mitigated by the depth of soil with elevated radium-226 concentrations and because the soil to groundwater pathway does not appear to be complete.

7.0 REFERENCES


- Eckerman. 2007. Ratios of Dose Rates for Contaminated Slabs. K.F. Eckerman. September 20. Available online: http://epa-prgs.ornl.gov/radionuclides/ContaminatedSlabs.pdf
- Kansas Department of Health and Environment (KDHE). 2007. Unified Focus Assessment Report, Standard Precision, Inc. (Former), 4105 West Pawnee, Wichita, Kansas. March.
- KDHE. 2010. Risk-Based Standards for Kansas RSK Manual 5th Version. October.
- Tetra Tech EM Inc. (Tetra Tech). 2010. Removal Site Evaluation Trip Report, Revision 01, Radiation Standard Precision, Inc. (Former), Wichita, Kansas. January.
- Tetra Tech. 2011. Groundwater Investigation Trip Report at Radiation Standard Precision, Inc. (Former), Wichita, Kansas. September 19.
- Tetra Tech. 2012. Quality Assurance Project Plan for Removal Action at Radiation Standard Precision, Inc. (Former), Wichita, Kansas. July 17.
- U.S. Environmental Protection Agency (EPA). 1998. Interoffice Memorandum Regarding Use of Soil Cleanup Criteria in 40 *Code of Federal Regulations* (CFR) Part 192 as Remediation Goals for Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Sites. From Stephen D. Luftig, Director of Office of Superfund Remediation Technology Innovation. To Distribution. February 12. Available online: http://www.epa.gov/superfund/health/conmedia/soil/cleanup.htm
- EPA. 2000a. *Multi-Agency Radiation Survey and Site Inspection Manual* (MARSSIM), Revision 1. EPA 402-R-97-016, Rev. 1. August.
- EPA. 2000b. Soil Screening Guidance for Radionuclides: User's Guide. EPA 540-R-00-007. October.
- EPA. 2013. Preliminary Remediation Goals for Radionuclides PRG Calculator. Accessed March 28, 2013. Available online: http://epa-prgs.ornl.gov/cgi-bin/radionuclides/rprg_search

APPENDIX A FIGURES

APPENDIX B PHOTOGRAPHIC RECORD

TETRA TECH PROJECT NO.	DESCRIPTION	This photograph shows the interior excavation of Area 2 that occurred in the 4105 West Pawnee manufacturing building near the loading dock.	1
X9004.12.0303.000	CLIENT	U.S. Environmental Protection Agency Region 7	Date
Direction: South	PHOTOGRAPHER	Robert Monnig	7/30/12

TETRA TECH PROJECT NO.	DESCRIPTION	This photograph shows where the removed waste pipe had exited the building in Area 2.	2
X9004.12.0303.000	CLIENT	U.S. Environmental Protection Agency Region 7	Date
Direction: South- southeast	PHOTOGRAPHER	Robert Monnig	7/30/12

TETRA TECH PROJECT NO.	DESCRIPTION	This photograph shows the interior excavation of Area 2.	3
X9004.12.0303.000	CLIENT	U.S. Environmental Protection Agency Region 7	Date
Direction: East	PHOTOGRAPHER	Robert Monnig	7/30/12

TETRA TECH PROJECT NO. X9004.12.0303.000	DESCRIPTION	This photograph shows an excavation associated with Area 6 (in foreground). The sump area excavation off the corner of the detached garage can be seen in the background.	4
	CLIENT	U.S. Environmental Protection Agency Region 7	Date
Direction: Northwest	PHOTOGRAPHER	Robert Monnig	8/2/12

TETRA TECH PROJECT NO.	DESCRIPTION	This photograph shows excavated areas associated with Area 6.	5
X9004.12.0303.000	CLIENT	U.S. Environmental Protection Agency Region 7	Date
Direction: North	PHOTOGRAPHER	Robert Monnig	8/2/12

TETRA TECH PROJECT NO. X9004.12.0303.000	DESCRIPTION	This photograph shows backfilling of the sump area excavation.	6
	CLIENT	U.S. Environmental Protection Agency Region 7	Date
Direction: West	PHOTOGRAPHER	Robert Monnig	8/2/12

TETRA TECH PROJECT NO. X9004.12.0303.000	DESCRIPTION	This photograph shows the Area 3 & 4 excavation that abuts the south wall of the detached garage.	7
	CLIENT	U.S. Environmental Protection Agency Region 7	Date
Direction: Northeast	PHOTOGRAPHER	Robert Monnig	8/3/12

TETRA TECH PROJECT NO. X9004.12.0303.000	DESCRIPTION	This photograph shows the exterior portion of the Area 2 excavation where the waste pipe run was removed.	8
	CLIENT	U.S. Environmental Protection Agency Region 7	Date
Direction: South	PHOTOGRAPHER	Robert Monnig	8/3/12

TETRA TECH PROJECT NO. X9004.12.0303.000	DESCRIPTION	This photograph shows the restored condition of the sump excavation area.	9
	CLIENT	U.S. Environmental Protection Agency Region 7	Date
Direction: Northwest	PHOTOGRAPHER	Robert Monnig	11/7/12

TETRA TECH PROJECT NO.	DESCRIPTION	This photograph shows the restored condition of the sump and Area 2 excavation areas.	10
X9004.12.0303.000	CLIENT	U.S. Environmental Protection Agency Region 7	Date
Direction: North	PHOTOGRAPHER	Robert Monnig	3/17/12

Radiation – Standard Precision, Inc. (Former) Wichita, Kansas

TETRA TECH	DESCRIPTION	This photograph shows the restored condition of the	11
PROJECT NO.		Area 3 and 4 excavation area.	
X9004.12.0303.000	CLIENT	U.S. Environmental Protection Agency Region 7	Date
Direction: Northwest	PHOTOGRAPHER	Robert Monnig	11/7/12

TETRA TECH PROJECT NO. X9004.12.0303.000	DESCRIPTION	This photograph shows the restored condition of the Area 5 excavation area.	12
	CLIENT	U.S. Environmental Protection Agency Region 7	Date
Direction: Southwest	PHOTOGRAPHER	Robert Monnig	11/7/12

Radiation – Standard Precision, Inc. (Former) Wichita, Kansas

TETRA TECH PROJECT NO. X9004.12.0303.000	DESCRIPTION	This photograph shows the restored condition of the Area 6 excavation area.	13
A9004.12.0303.000	CLIENT	U.S. Environmental Protection Agency Region 7	Date
Direction: Southeast	PHOTOGRAPHER	Robert Monnig	11/7/12

TETRA TECH PROJECT NO.	DESCRIPTION	This photograph shows the restored condition of the Area 1 excavation area.	14
X9004.12.0303.000	CLIENT	U.S. Environmental Protection Agency Region 7	Date
Direction: West	PHOTOGRAPHER	Robert Monnig	11/7/12

Radiation – Standard Precision, Inc. (Former) Wichita, Kansas

TETRA TECH PROJECT NO. X9004.12.0303.000	DESCRIPTION	This photograph shows the orange construction fencing that was placed across the bottom of the sump area excavation prior to backfilling.	15
A3004.12.0303.000	CLIENT	U.S. Environmental Protection Agency Region 7	Date
Direction: East	PHOTOGRAPHER	Megan Schuette	8/2/12

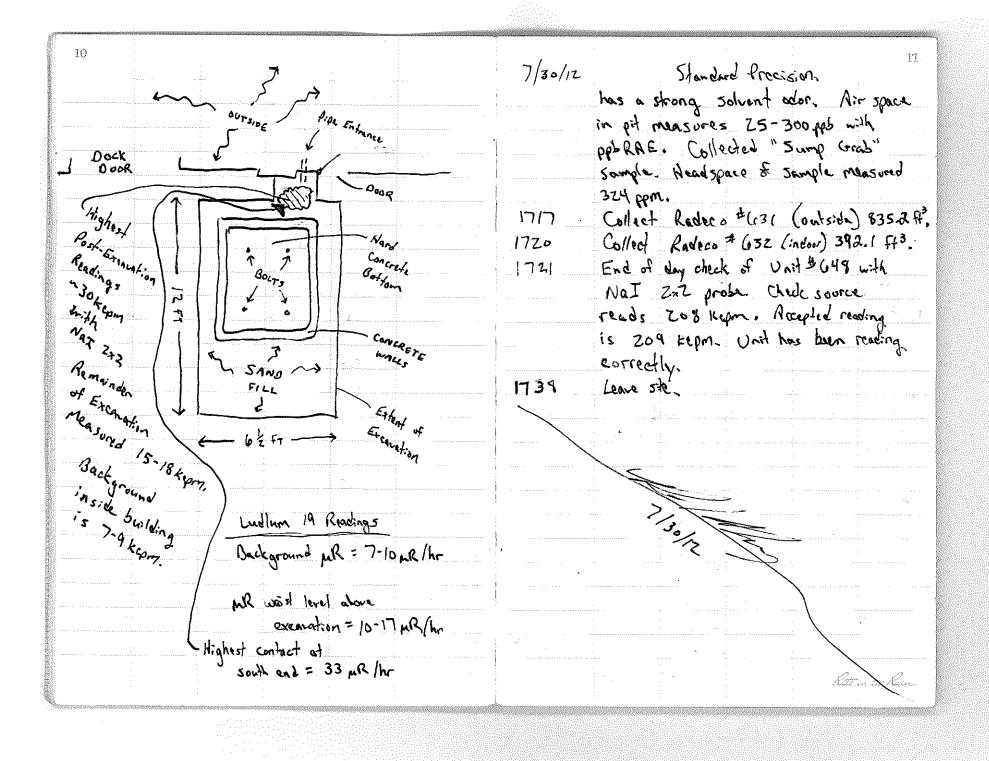
APPENDIX C

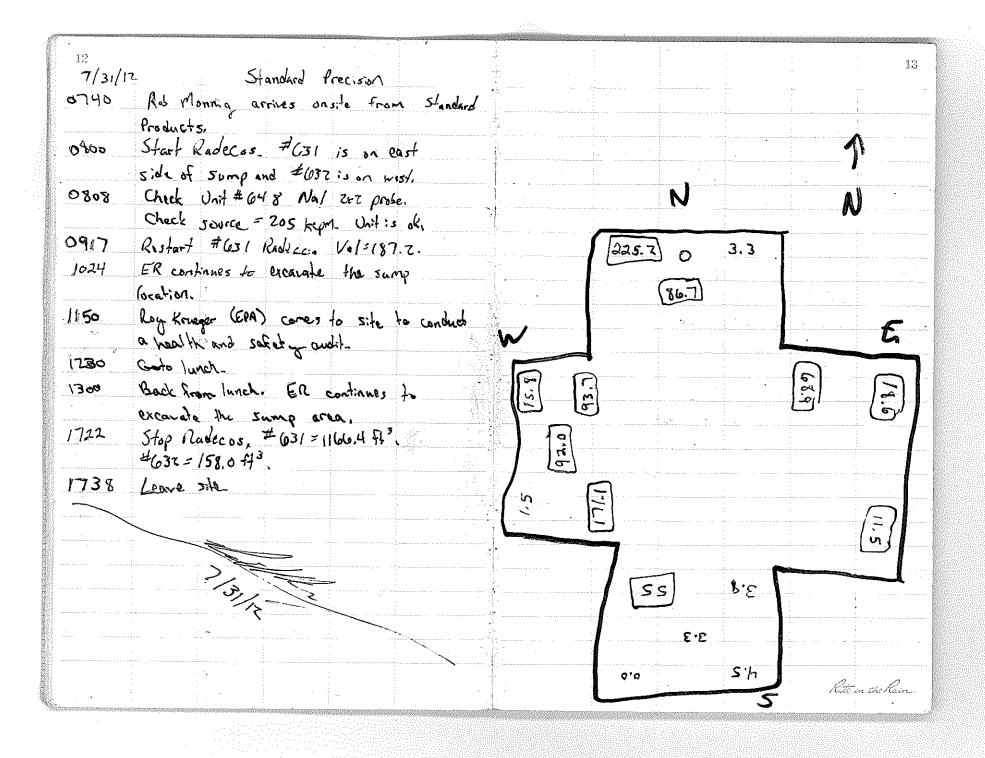
FIELD NOTES

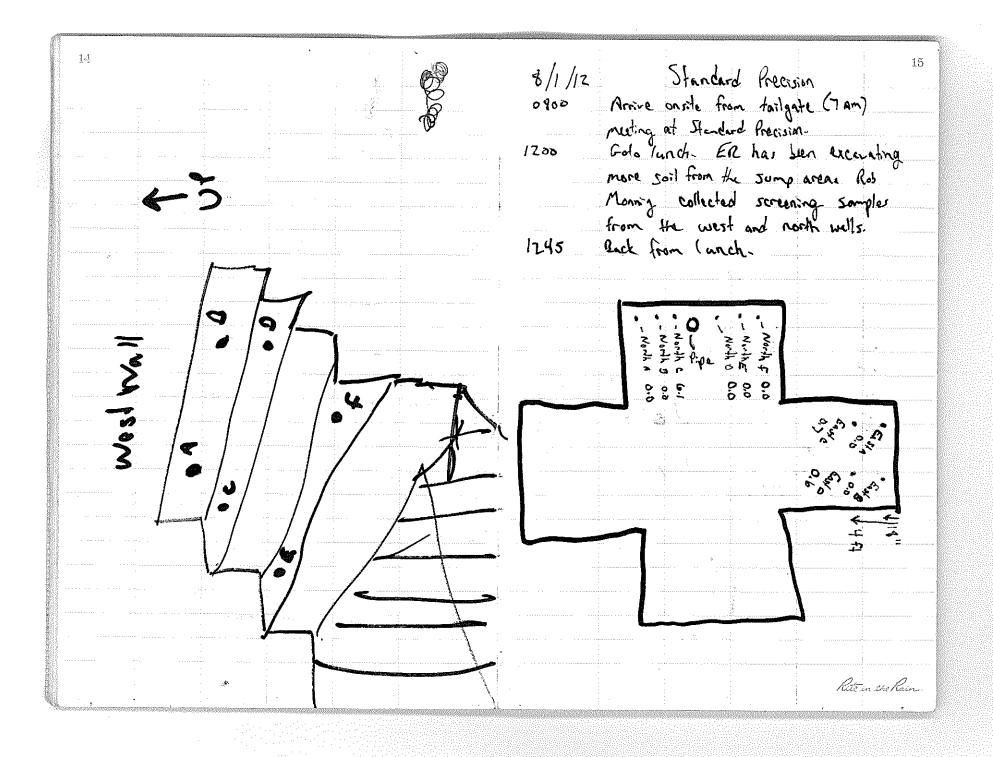
KS1283

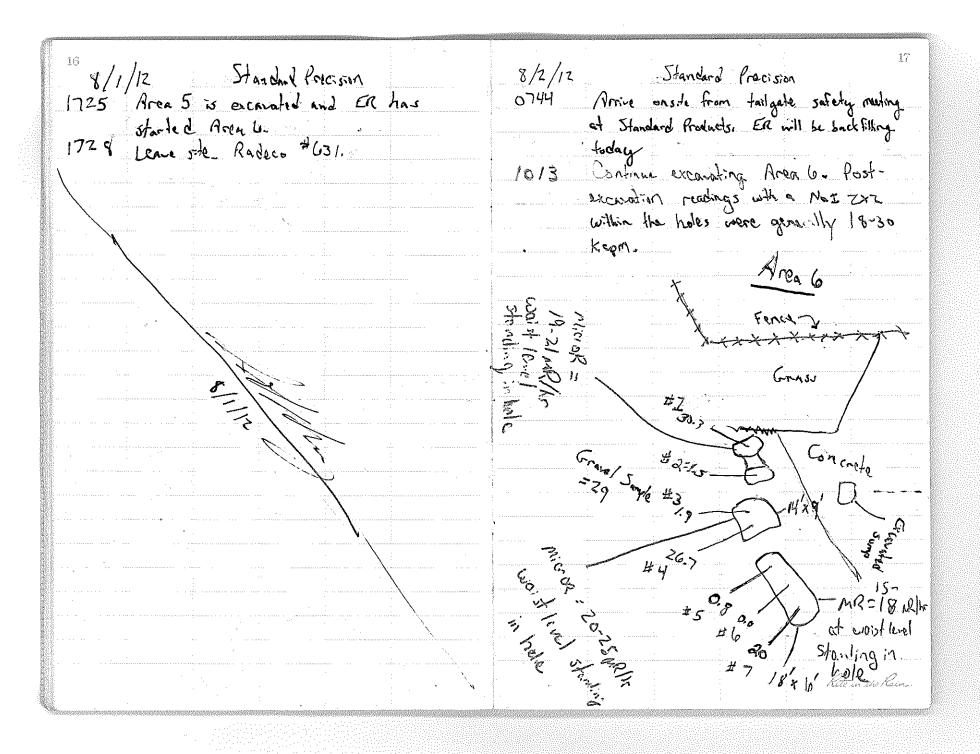
Standard Precision
Removal

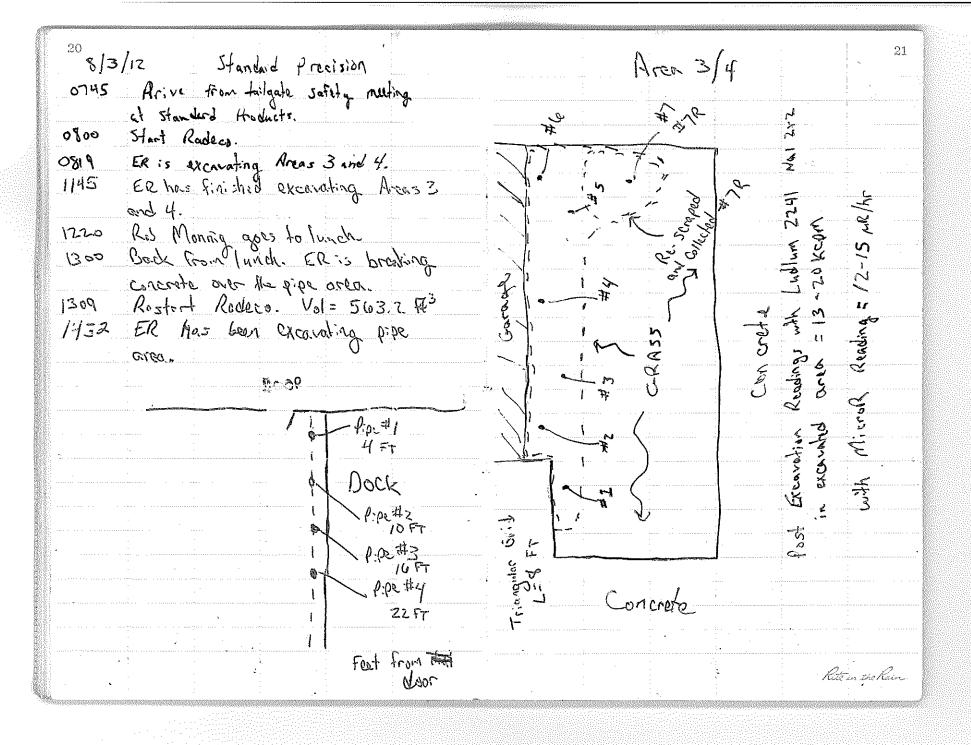
7-25-12 7-25-12 STIN Hoth I DSG SCHUETTE 0756 STM Hethin ~ OSC Schuette 1430 arrise op-site, Will delineate agreensite Cotting of counte excavation area, Chock Fortso by ER will begin this mornic. 1611 Site Moun to Stander excasta, actualie Start interior Raders #632 0857 Start exterior Kadeou \$634 2.8 CFM 1200 1230 Kesure, mor, tilities. EK, is continuing to cust 7-25-12 concerpor hour Shif down interior Rodeco #632 1635 delber to 1800

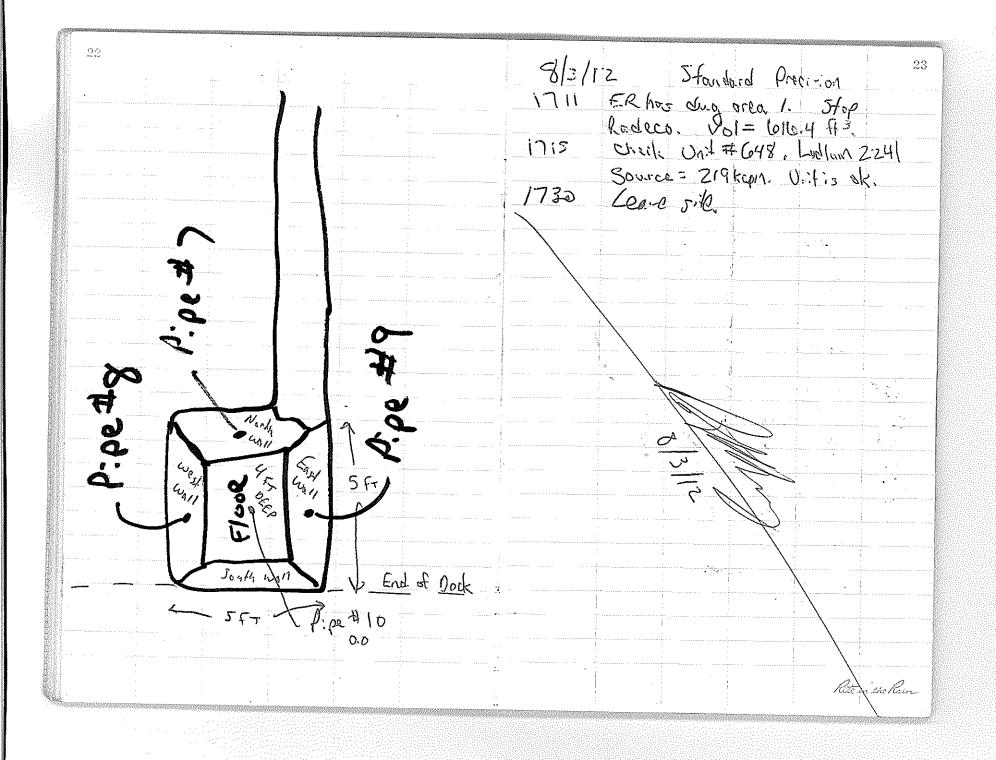

7-27-12 0655 5TM, He fla arms @ Starched Paluds you ER performs don't safety meeting, Weather today: Suday Hi 2 104°F 0750 Arrive e Standard! Pregista sik besin protor site activities, Start I menon Reducit 631 ZIY CFM 0328 STAT extrac Radio# 632 0832 ERbyis Wat to remove couche 1138 Cutting saw natheration will take Shot down interior Radio 450,0ft;3 Shut down extens Radio #632 1700 Mid Refert inferior 10dece \$631 2.50AM 1232 Report exterior Rackro 4632 26CF11 Ris Monning onsite. Grew has been cutting concrete. 1400 Crem says they are tipished with


7/27/12 Stoneted Precision the concrete saw. Rd Mouning screen: He saw Slade with the alpha probe a Rending are considert with lackground. Restarted experior Rodaco # 1032. 1415 Volume UNS 171-3 17 The hydraulic line on the hanner 1551 Los Scoken. Stop interior Roders #631 1552 Volume = 307.9 As. Stop exterior Radico 61032. Wame = 224.8 11. Leave = 10. 1640


Alto in the Rain


7/28/12-RM Standard Precision 3 800 Rob Monning arrives at Standard Precision		AINAGE SWALE (METERS)
1830 P.I. Amai I M. C.L.II CAN	STATION BS	HI FS ELEV
1830 Rol Minning and Megan Schulfe surfan survey the chainings schole on the south side of	Top of Offily Box	24.85
the Standard Precision facility: Measurements on a taken from the bottom of the sounds	5 ft 7.69	107.69 100.00 100.00
	Utility day, Top of (wed ber) 5 ft 7.45°	4.29
L O XXXXXX	10 \$	7.39
N 1 1 - 1/ /	15 €4	7.39
	20 Fl	
	25 EI	7.28
	30 F	7.23
S Tage	35 %	6.93
	40 £	7.30
Salin	4s f1	1
	50 A	7.36
Sept. Co. Sept.	S5 #	6.80
igassa de	.60 St	
San Garage	45 F	7.61
3 , 4 2	70 ft	6.53
	75 ft	6.39
The state of the s	20 H	6.18
	85 #	6.05
i de	90 4	5.93
		Rick in shir Reise.
		A COURT OF THE STATE OF THE STA


			. Pro-	9
STATION BS	AL FS	ELEV	Station	
95 th	107.109 5.86		1	(surface of concrete flow, 4.02
/00 ft	5.91		9	just inside west dock
/05 f4	5.81			Coor)
110 #4	5.91			in the second se
lie th	5.94			
120 ft	5.88		1000	CO \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
125 H	5.90	er e	1000	ER has been breaking concrete and is
130 H	5.91		1-4-	seginning to exercise.
132 tt	5.83		1015	Start Radecos. Inside Radeco is #632.
140 ft	5.81		12 -	#631:s outside Radeco.
145 ft	5.81		1200	A structure of exercise is executived at
150 ft	5.68		#D A C	oxcavation inside building. Goto lunch,
122 tt	5.57		1305	Bade from lunch and checking an standard
160 Ft	5.6\		iil at	bearies.
165 FA	5.65		1406	ER has excavated area inside building
170 Ff	5.77			(see next page for diagram and
1754	5.85			Ceal-fine readings).
180 54		· · · · · · · · · · · · · · · · · · ·	772	ER has been exceeding the Jump
182 tt	5.87			area outside of the Suilding. A
190 ft	5.77 5.84	•		remnant concrete tank-probably a
195 FL				septic tunk-was un-earthed. Readings
Zoo ff	5.87 = 70	· · · · · · · · · · · · · · · · · · ·		up to 0.5 mR/hr were reasoned
the contract of the contract o	5.79			with the Ludlain Model 19. Excavated
Whilety box (East)	2.40			50:1 appears discolored (light gray) and
concrete in front of utility box	5.22			Rete in the Rain.



8/4/12 Standard Precision 0845 Rob Monning arrives at Standard Precision from 7 Am tailgute meeting at Standard Products. 0922 Collect (Charance sarylos. 0923 REF-1 37.65.090 97.39136 0925 REF-2 37.65.090 97.39130 0927 REF-3 37.65.091 97.39115 0922 REF-5 37.65.091 97.39117 0934 REF-6 37.65.087 97.39128 0937 REF-7 37.65.087 97.39137	11/2/12 Standard Precision. 0900 Rob Mainia ansile to conduct post-remodal RAT survey. 1100 RAT Survey complete. 1 Reas surveyed were those 1130 Collected Fire 1-minute counts: 1 background area using Ludhum 44-20 Reading 1. Min Coul (cpm) 19/343 2 23,010 2 23,010 3 24,890 3 24,890 5 20,714 1150 Rob Manning photographs the removal greas- 1200 Ceane 5.42
8/4/12	11/3/2 Rate in she Rain.

APPENDIX D TABULATED LABORATORY DATA

TABLE D-1 LABORATORY RESULTS FOR BACKFILL MATERIAL RADIATION - STANDARD PRECISION SITE (FORMER), WICHITA, KANSAS

Analyte	Units	Backfill Sample	KDHE Tier 2 Risk-Based Cleanup Value for Residential Scenarios				
Volatile Organic Compounds (VOC)	-	No VOCs detected at concentrations above laboratory detection limits	-				
Semivolatile Organic Compounds (SVOC)	-	No SVOCs detected at concentrations above laboratory detection limits	-				
Arsenic	mg/kg	3.4 B	11.3				
Barium	mg/kg	116	15,300				
Cadmium	mg/kg	< 1.1	39				
Chromium	mg/kg	7.9	33.6				
Lead	mg/kg	8.6 B, J	400				
Mercury	mg/kg	< 0.035	2				
Selenium	mg/kg	1.2 B	391				
Silver	mg/kg	< 2.1	391				
Radium-226	pCi/g	0.89	NE				

Notes:

All units in milligrams per kilogram (mg/kg)

B Laboratory qualifier indicating the analyte was also detected in the method blank

I Laboratory qualifier indicated the result is less than the laboratory reporting limit and the result is estimated

KDHE Kansas Department of Health and Environment

mg/kg Milligrams per kilogram

NE Not established pCi/g picoCuries per gram

TABLE D-2

LABORATORY RESULTS FOR FINAL STATUS SURVEY SOIL SAMPLES RADIATION - STANDARD PRECISION, INC. (FORMER) - WICHITA, KANSAS

Sample Info	rmation	U-238 Decay Series							U-235 Decay Series			Th-232 Decay Series				
Sample Name	Date Collected	U-238	Th-234	Ra-226	Pb-214	Bi-214	Pb-210	U-235	Pa-231	Ac-227	Ra-228	Ac-228	Pb-212	Bi-212	T1-208	
Area 1 Survey Unit: Area at Northwest Corner of Property																
AREA 1	8/3/2012	< 3.2	< 3.2	7.0	7.23	7	3.4	< 0.75	< 2.6	< 1.1	0.55	0.55	0.8	< 0.84	0.16	
Area 2 Survey Unit: Interior Area and Exterior Pipe Run																
PIT-NORTH	7/30/2012	< 2.23	< 2.23	1.17	1.46	1.17	< 2.18	< 0.478	< 1.94	< 0.521	< 0.301	< 0.301	0.564	< 0.682	0.195	
PIT-SOUTH	7/30/2012	< 1.55	< 1.55	0.468	0.426	0.468	< 1.53	< 0.357	< 1.61	< 0.22	0.513	0.513	0.4	< 0.523	0.186	
PIT-EAST	7/30/2012	< 1.61	< 1.61	0.827	0.871	0.827	< 2.2	< 0.437	< 1.97	< 0.589	0.27	0.27	0.412	< 0.662	< 0.0961	
PIT WEST	7/30/2012	< 1.71	< 1.71	0.356	0.375	0.356	< 1.93	< 0.348	< 1.75	< 0.794	0.28	0.28	0.373	< 0.506	0.143	
PIPE #1	8/3/2012	< 2.3	< 2.3	3.45	3.61	3.45	< 2.5	< 0.56	< 2.5	< 0.53	0.91	0.91	0.68	< 0.75	0.238	
PIPE #2	8/3/2012	< 2.94	< 2.94	4.79	4.88	4.79	< 3.13	< 0.652	< 2.45	< 0.94	0.915	0.915	0.623	< 0.672	0.258	
PIPE #3	8/3/2012	< 1.7	< 1.7	0.759	1.07	0.759	< 2.31	< 0.316	< 2.05	< 0.312	0.722	0.722	0.597	< 0.63	0.216	
PIPE #4	8/3/2012	< 1.59	< 1.59	0.423	0.58	0.423	< 2.14	< 0.329	< 1.87	< 0.399	0.609	0.609	0.577	< 0.782	0.186	
PIPE #5	8/3/2012	< 1.79	< 1.79	0.656	0.635	0.656	< 2.01	< 0.351	< 1.78	< 0.383	0.694	0.694	0.603	< 0.525	0.239	
PIPE #6	8/3/2012	< 1.7	< 1.7	0.66	0.79	0.66	< 2.4	< 0.41	< 1.3	< 0.96	0.85	0.85	0.6	0.8	0.203	
PIPE #7	8/3/2012	< 2.3	< 2.3	1.12	1.16	1.12	2.5	< 0.54	< 2.4	< 0.7	1.06	1.06	1	1.59	0.36	
PIPE #8	8/3/2012	1.5	1.5	0.91	0.98	0.91	3.6	< 0.33	< 1.5	< 0.99	0.84	0.84	0.58	< 0.61	0.293	
PIPE #9	8/3/2012	< 2.25	< 2.25	2.10	1.99	2.1	6.6	< 0.419	< 2.24	< 0.724	0.867	0.867	0.669	< 0.582	0.295	
PIPE #10	8/3/2012	< 2.8	< 2.8	1.48	1.68	1.48	3.1	< 0.53	< 3	< 0.87	0.97	0.97	0.85	< 0.74	0.34	
	•		Minimum	0.356							l.	•	l .			
			Maximum	4.79												
			Average	1.4												
					1											
Areas 3 & 4 Survey Un	it: Area Abutting S	South Side	of Detached	Garage												
AREA 3 #1	8/3/2012	< 2.1	< 2.1	1.23	1.27	1.23	< 2	< 0.38	< 1.8	< 1.1	0.7	0.7	0.54	< 0.46	0.102	
AREA 3 #2	8/3/2012	< 2.19	< 2.19	1.96	1.62	1.96	4.29	< 0.542	< 2.14	< 1.45	1.1	1.1	0.875	< 0.657	0.254	
AREA 3 #3	8/3/2012	< 2.99	< 2.99	2.70	2.37	2.7	< 2.65	< 0.608	< 3.37	< 1.17	1.47	1.47	0.883	< 0.97	0.284	
AREA 3 #4	8/3/2012	< 2.52	< 2.52	1.43	1.69	1.43	< 2.48	< 0.538	< 2.66	< 1.53	0.948	0.948	0.927	1.13	0.335	
AREA 3 #5	8/3/2012	< 1.83	< 1.83	0.905	0.977	0.905	< 2.43	< 0.413	< 1.92	< 1.42	0.996	0.996	0.948	< 0.678	0.353	
AREA 3 #6	8/3/2012	< 2.1	< 2.1	0.80	0.93	0.8	< 2.5	< 0.43	< 2.3	< 1.5	1.32	1.32	0.9	< 0.7	0.34	
AREA 3 #7R	8/3/2012	< 2.1	< 2.1	0.91	1.21	0.91	< 2.4	< 0.5	< 2.6	< 0.9	1.43	1.43	1	1.29	0.51	
			Minimum	0.80						I.	ı	I.				
			Maximum	2.70												
			Average	1.4												
			2		ı											
Area 5 Survey Unit: Si	mall Discrete Area	on South-C	Central Portio	n of Proper	ty											
AREA 5	8/1/2012	< 2.3	< 2.3	1.55	1.5	1.55	3.6	< 0.58	< 2.6	< 1.3	1.13	1.13	1.16	0.68	0.347	

TABLE D-2 (continued)

LABORATORY RESULTS FOR FINAL STATUS SURVEY SOIL SAMPLES RADIATION - STANDARD PRECISION, INC. (FORMER) - WICHITA, KANSAS

Sample Infor	mation			U-238 Deca	y Series			U-235 Decay Series			Th-232 Decay Series				
Sample Name	Date Collected	U-238	Th-234	Ra-226	Pb-214	Bi-214	Pb-210	U-235	Pa-231	Ac-227	Ra-228	Ac-228	Pb-212	Bi-212	T1-208
Area 6 Survey Unit: Mu				Property											
AREA 6 #1R	8/2/2012	< 3.02	< 3.02	2.98	3.3	2.98	< 2.95	< 0.722	< 3.17	< 2	1.35	1.35	1.41	< 0.754	0.497
AREA 6 #1R (duplicate)1	8/2/2012	< 2.76	< 2.76	2.84	3.37	2.84	< 2.83	< 0.584	< 2.1	< 1	1.48	1.48	1.35	1.17	0.549
AREA 6 #2	8/2/2012	< 3.23	< 3.23	4.99	5.58	4.99	4.34	< 0.915	< 3.86	< 0.593	1.48	1.48	1.1	< 0.998	0.586
AREA 6 #3	8/2/2012	< 3.3	< 3.3	5.84	6.02	5.84	6.3	< 0.76	< 3.6	< 1.2	1.24	1.24	1.04	1.27	0.38
AREA 6 #4R	8/2/2012	< 2.36	< 2.36	1.35	1.56	1.35	< 2.22	< 0.516	< 2.62	< 1.69	1.23	1.23	1.03	< 0.806	0.28
AREA 6 #5	8/2/2012	< 2.98	< 2.98	2.88	3.13	2.88	< 2.61	< 0.602	< 2	< 0.966	1.23	1.23	1.17	< 0.709	0.407
AREA 6 #6	8/2/2012	< 2.86	< 2.86	1.50	1.5	1.5	< 3.46	< 0.731	< 3.75	< 2.54	1.02	1.02	1.28	< 1.43	0.504
AREA 6 #7R	8/2/2012	< 2.99	< 2.99	3.69	4	3.69	< 3.23	< 0.692	< 3.53	< 0.706	0.712	0.712	0.934	< 0.802	0.416
			Minimum	1.35											
			Maximum	5.84											
			Average	3.32											
			•												
Area 7 Survey Unit: Sur	mp Excavation (No	ear Surfac	e Soil)												
NORTH A	8/1/2012	< 1.5	< 1.5	1.00	1.4	1	< 2.1	< 0.37	< 2	< 0.25	0.97	0.97	0.73	< 0.65	0.322
NORTH B	8/1/2012	< 2.3	< 2.3	0.88	1.04	0.88	< 2.3	< 0.45	< 1.9	< 0.75	0.76	0.76	0.7	< 0.67	0.243
NORTH C	8/1/2012	< 4.7	< 4.7	12.0	11.5	12	12.5	< 0.89	< 4.9	< 1.2	0.71	0.71	0.64	< 1.1	0.27
NORTH D	8/1/2012	< 2.03	< 2.03	0.817	0.913	0.817	7.55	< 0.36	< 2.1	< 1.16	0.855	0.855	0.667	< 0.537	0.236
NORTH E	8/1/2012	< 2.19	< 2.19	0.473	0.642	0.473	< 2.03	< 0.459	< 2.13	< 1.15	0.537	0.537	0.609	< 0.55	0.253
			. 1 0 4	1.07	1.29	1.07	. 2.1	. 0. 1.6.1	. 2 22	< 0.424		1 10		1.1	0.266
NORTH F	8/1/2012	< 1.84	< 1.84	1.07	1.29	1.07	< 2.1	< 0.464	< 2.23	< 0.424	1.12	1.12	0.872	1.1	0.00
NORTH F SOUTH 1	8/1/2012 7/31/2012	< 1.84 < 3.9	< 3.9	6.98	6.75	6.98	5.88	< 0.464	< 3.62	< 0.424	0.735	0.735	0.872 0.932	< 0.808	0.438
SOUTH 1 SOUTH 2	7/31/2012	< 3.9	< 3.9	6.98	6.75	6.98	5.88	< 0.793	< 3.62	< 0.583	0.735	0.735	0.932	< 0.808	0.438
SOUTH 1 SOUTH 2 SOUTH 3	7/31/2012 7/31/2012	< 3.9 < 2.16	< 3.9 < 2.16	6.98 2.60	6.75 2.86	6.98 2.6	5.88 3.84	< 0.793 < 0.56	< 3.62 < 2.51	< 0.583 < 0.821	0.735 0.672	0.735 0.672	0.932 0.811	< 0.808 < 0.631	0.438 0.298
SOUTH 1 SOUTH 2 SOUTH 3 EAST A	7/31/2012 7/31/2012 7/31/2012	< 3.9 < 2.16 < 3.8	< 3.9 < 2.16 < 3.8	6.98 2.60 5.84	6.75 2.86 6.15	6.98 2.6 5.84	5.88 3.84 7.3	< 0.793 < 0.56 < 1.1	< 3.62 < 2.51 < 3.9	< 0.583 < 0.821 < 1	0.735 0.672 < 0.58	0.735 0.672 < 0.58	0.932 0.811 0.51	< 0.808 < 0.631 < 1.3	0.438 0.298 < 0.16
SOUTH 1	7/31/2012 7/31/2012 7/31/2012 8/1/2012	< 3.9 < 2.16 < 3.8 < 1.65	< 3.9 < 2.16 < 3.8 < 1.65	6.98 2.60 5.84 0.801	6.75 2.86 6.15 0.868	6.98 2.6 5.84 0.801	5.88 3.84 7.3 < 2.06	< 0.793 < 0.56 < 1.1 < 0.455	< 3.62 < 2.51 < 3.9 < 1.8	< 0.583 < 0.821 < 1 < 1.17	0.735 0.672 < 0.58 0.778	0.735 0.672 < 0.58 0.778	0.932 0.811 0.51 0.751	< 0.808 < 0.631 < 1.3 < 0.494	0.438 0.298 < 0.16 0.232
SOUTH 1 SOUTH 2 SOUTH 3 EAST A EAST A (duplicate) ¹ EAST B	7/31/2012 7/31/2012 7/31/2012 8/1/2012 8/1/2012	<3.9 <2.16 <3.8 <1.65 <2.26	< 3.9 < 2.16 < 3.8 < 1.65 < 2.26	6.98 2.60 5.84 0.801 0.779	6.75 2.86 6.15 0.868 0.858	6.98 2.6 5.84 0.801 0.779	5.88 3.84 7.3 < 2.06 < 2.25	< 0.793 < 0.56 < 1.1 < 0.455 < 0.414	< 3.62 < 2.51 < 3.9 < 1.8 < 2.37	< 0.583 < 0.821 < 1 < 1.17 < 0.962	0.735 0.672 < 0.58 0.778 0.906	0.735 0.672 < 0.58 0.778	0.932 0.811 0.51 0.751 0.687	< 0.808 < 0.631 < 1.3 < 0.494 < 0.695	0.438 0.298 < 0.16 0.232 0.252
SOUTH 1 SOUTH 2 SOUTH 3 EAST A EAST A (duplicate) ¹	7/31/2012 7/31/2012 7/31/2012 8/1/2012 8/1/2012 8/1/2012	<3.9 <2.16 <3.8 <1.65 <2.26 <2.05	<3.9 <2.16 <3.8 <1.65 <2.26 <2.05	6.98 2.60 5.84 0.801 0.779 1.42	6.75 2.86 6.15 0.868 0.858 1.54	6.98 2.6 5.84 0.801 0.779 1.42	5.88 3.84 7.3 < 2.06 < 2.25 < 1.98	<0.793 <0.56 <1.1 <0.455 <0.414 <0.422	<3.62 <2.51 <3.9 <1.8 <2.37 <1.6	< 0.583 < 0.821 < 1 < 1.17 < 0.962 < 0.472	0.735 0.672 < 0.58 0.778 0.906	0.735 0.672 < 0.58 0.778 0.906	0.932 0.811 0.51 0.751 0.687 0.733	<0.808 <0.631 <1.3 <0.494 <0.695 <0.529	0.438 0.298 < 0.16 0.232 0.252 0.291
SOUTH 1 SOUTH 2 SOUTH 3 EAST A EAST A (duplicate) ¹ EAST B WEST A	7/31/2012 7/31/2012 7/31/2012 8/1/2012 8/1/2012 8/1/2012 8/1/2012	<3.9 <2.16 <3.8 <1.65 <2.26 <2.05 <2.8	<3.9 <2.16 <3.8 <1.65 <2.26 <2.05 <2.8	6.98 2.60 5.84 0.801 0.779 1.42 5.33	6.75 2.86 6.15 0.868 0.858 1.54 5.87	6.98 2.6 5.84 0.801 0.779 1.42 5.33	5.88 3.84 7.3 < 2.06 < 2.25 < 1.98 2.9	< 0.793 < 0.56 < 1.1 < 0.455 < 0.414 < 0.422 < 0.72	<3.62 <2.51 <3.9 <1.8 <2.37 <1.6 <1.8	<0.583 <0.821 <1 <1.17 <0.962 <0.472 <0.87	0.735 0.672 < 0.58 0.778 0.906 1 0.52	0.735 0.672 < 0.58 0.778 0.906 1 0.52	0.932 0.811 0.51 0.751 0.687 0.733	<0.808 <0.631 <1.3 <0.494 <0.695 <0.529 <0.68	0.438 0.298 < 0.16 0.232 0.252 0.291 0.28
SOUTH 1 SOUTH 2 SOUTH 3 EAST A EAST A (duplicate) ¹ EAST B WEST A	7/31/2012 7/31/2012 7/31/2012 8/1/2012 8/1/2012 8/1/2012 8/1/2012 8/1/2012	<3.9 <2.16 <3.8 <1.65 <2.26 <2.05 <2.8 <1.7	< 3.9 < 2.16 < 3.8 < 1.65 < 2.26 < 2.05 < 2.8 < 1.7	6.98 2.60 5.84 0.801 0.779 1.42 5.33 0.77	6.75 2.86 6.15 0.868 0.858 1.54 5.87 0.91	6.98 2.6 5.84 0.801 0.779 1.42 5.33 0.77	5.88 3.84 7.3 <2.06 <2.25 <1.98 2.9 <2	< 0.793 < 0.56 < 1.1 < 0.455 < 0.414 < 0.422 < 0.72 < 0.43	<3.62 <2.51 <3.9 <1.8 <2.37 <1.6 <1.8 <1.9	< 0.583 < 0.821 < 1 < 1.17 < 0.962 < 0.472 < 0.87 0.37	0.735 0.672 < 0.58 0.778 0.906 1 0.52 0.65	0.735 0.672 < 0.58 0.778 0.906 1 0.52 0.65	0.932 0.811 0.51 0.751 0.687 0.733 0.73 0.68	<0.808 <0.631 <1.3 <0.494 <0.695 <0.529 <0.68 <0.57	0.438 0.298 < 0.16 0.232 0.252 0.291 0.28 0.196
SOUTH 1 SOUTH 2 SOUTH 3 EAST A EAST A (duplicate) ¹ EAST B WEST A WEST A WEST C	7/31/2012 7/31/2012 7/31/2012 8/1/2012 8/1/2012 8/1/2012 8/1/2012 8/1/2012 8/1/2012	<3.9 <2.16 <3.8 <1.65 <2.26 <2.05 <2.8 <1.7 <2	< 3.9 < 2.16 < 3.8 < 1.65 < 2.26 < 2.05 < 2.8 < 1.7 < 2	6.98 2.60 5.84 0.801 0.779 1.42 5.33 0.77 1.32	6.75 2.86 6.15 0.868 0.858 1.54 5.87 0.91	6.98 2.6 5.84 0.801 0.779 1.42 5.33 0.77 1.32	5.88 3.84 7.3 <2.06 <2.25 <1.98 2.9 <2 <2	<0.793 <0.56 <1.1 <0.455 <0.414 <0.422 <0.72 <0.43 <0.51	<3.62 <2.51 <3.9 <1.8 <2.37 <1.6 <1.8 <1.9	<0.583 <0.821 <1 <1.17 <0.962 <0.472 <0.87 0.37 <0.68	0.735 0.672 < 0.58 0.778 0.906 1 0.52 0.65 0.81	0.735 0.672 < 0.58 0.778 0.906 1 0.52 0.65 0.81	0.932 0.811 0.51 0.751 0.687 0.733 0.73 0.68 0.61	<0.808 <0.631 <1.3 <0.494 <0.695 <0.529 <0.68 <0.57	0.438 0.298 < 0.16 0.232 0.252 0.291 0.28 0.196 0.243
SOUTH 1 SOUTH 2 SOUTH 3 EAST A EAST A (duplicate) ¹ EAST B WEST A WEST A WEST C	7/31/2012 7/31/2012 7/31/2012 8/1/2012 8/1/2012 8/1/2012 8/1/2012 8/1/2012 8/1/2012	<3.9 <2.16 <3.8 <1.65 <2.26 <2.05 <2.8 <1.7 <2	<pre><3.9 <2.16 <3.8 <1.65 <2.26 <2.05 <2.8 <1.7 <2 <2.1</pre>	6.98 2.60 5.84 0.801 0.779 1.42 5.33 0.77 1.32 2.38	6.75 2.86 6.15 0.868 0.858 1.54 5.87 0.91	6.98 2.6 5.84 0.801 0.779 1.42 5.33 0.77 1.32	5.88 3.84 7.3 <2.06 <2.25 <1.98 2.9 <2 <2	<0.793 <0.56 <1.1 <0.455 <0.414 <0.422 <0.72 <0.43 <0.51	<3.62 <2.51 <3.9 <1.8 <2.37 <1.6 <1.8 <1.9	<0.583 <0.821 <1 <1.17 <0.962 <0.472 <0.87 0.37 <0.68	0.735 0.672 < 0.58 0.778 0.906 1 0.52 0.65 0.81	0.735 0.672 < 0.58 0.778 0.906 1 0.52 0.65 0.81	0.932 0.811 0.51 0.751 0.687 0.733 0.73 0.68 0.61	<0.808 <0.631 <1.3 <0.494 <0.695 <0.529 <0.68 <0.57	0.438 0.298 < 0.16 0.232 0.252 0.291 0.28 0.196 0.243

TABLE D-2 (continued)

LABORATORY RESULTS FOR FINAL STATUS SURVEY SOIL SAMPLES RADIATION - STANDARD PRECISION, INC. (FORMER) - WICHITA, KANSAS

Sample Infor	rmation			U-238 Deca	ny Series			U-2	35 Decay Ser	ries		Th-2	32 Decay Se	ries	
Sample Name	Date Collected	U-238	Th-234	Ra-226	Pb-214	Bi-214	Pb-210	U-235	Pa-231	Ac-227	Ra-228	Ac-228	Pb-212	Bi-212	T1-208
Area 8 Survey Unit: Su	ımp Excavation (S														
SOUTH 4	7/31/2012	< 2.3	< 2.3	2.93	3.01	2.93	4.8	< 0.4	< 2.9	< 1	< 0.39	< 0.39	0.32	< 0.8	< 0.098
SOUTH 5	7/31/2012	< 6.5	< 6.5	35.2	37.4	35.2	21.8	< 1.5	< 4	< 1.7	0.9	0.9	0.79	< 1.4	< 0.25
SOUTH 5 (duplicate) ¹	7/31/2012	< 5.9	< 5.9	34.8	37	34.8	26.4	< 1.5	< 6.1	< 1.5	0.82	0.82	0.72	< 1.6	< 0.24
WEST E	8/1/2012	< 3.2	< 3.2	4.69	4.85	4.69	5.7	< 0.7	< 3	< 0.84	0.68	0.68	0.7	< 0.74	0.26
WEST F	8/1/2012	< 2.6	< 2.6	1.12	1.06	1.12	3.8	< 0.69	< 3.9	< 1.2	1.26	1.26	0.87	< 0.92	0.27
EAST C	8/1/2012	< 2.09	< 2.09	0.918	1.3	0.918	3.14	< 0.423	< 2.37	< 0.411	1.28	1.28	0.957	< 0.585	0.39
EAST D	8/1/2012	< 3.97	< 3.97	2.51	2.32	2.51	6.61	< 0.788	< 3.36	< 2.43	0.852	0.852	1.3	< 1.52	0.573
			Minimum	0.918											
			Maximum	35.2											
			Average	11.7											
Reference Survey Area															
REF-1	8/4/2012	< 1.7	< 1.7	0.69	0.62	0.69	2.5	< 0.37	< 1.6	< 1	0.59	0.59	0.5	< 0.5	0.12
REF-1 (duplicate) ¹	8/4/2012	< 2.4	< 2.4	0.75	0.91	0.75	< 2.8	< 0.49	< 2.9	< 0.99	0.65	0.65	0.49	< 0.72	0.173
REF-2	8/4/2012	< 2.9	< 2.9	1.12	1.35	1.12	< 2.9	< 0.54	< 3.2	< 0.72	0.51	0.51	0.76	< 1.2	0.35
REF-3	8/4/2012	2.1	2.1	1.44	1.58	1.44	3.2	< 0.5	< 2.4	< 0.7	< 0.4	< 0.4	0.36	< 0.9	0.121
REF-4	8/4/2012	< 2	< 2	1.11	1.17	1.11	3.4	< 0.41	< 2.2	< 0.49	1.02	1.02	0.81	< 0.73	0.3
REF-5	8/4/2012	< 2.1	< 2.1	1.07	1.15	1.07	< 2.2	< 0.5	< 1.7	< 0.88	0.87	0.87	0.54	< 0.64	0.152
REF-6	8/4/2012	< 2.1	< 2.1	1.50	1.68	1.5	4.3	< 0.46	< 2.4	< 0.75	0.38	0.38	0.38	< 0.67	0.22
REF-7	8/4/2012	< 1.7	< 1.7	0.95	1.06	0.95	3.7	< 0.37	< 1.7	< 0.64	0.63	0.63	0.56	< 0.4	0.213
			Minimum	0.69											
			Maximum	1.50											
			Average	1.1											

Notes:

All results in picoCuries per gram (pCi/g)

Shaded values indicate Ra-226 concentrations exceeding the 5 pCi/g plus the average background of 1.1 pCi/g (or 6.1 pCi/g).

Elements:

Ac: Actinium Bi: Bismuth Pa: Protactinium Pb: Lead Ra: Radium Th: Thorium Tl: Thallium U: Uranium

¹ Laboratory duplicate not included in calculation of survey unit minimum, maximum, or average Ra-226 concentration. As a conservative measure, the duplicate pair with the highest Ra-226 concentration is used in calculations, except for the reference survey area, where the duplicate pair with the lowest Ra-226 concentration is used.

APPENDIX E DATA SUPPORTING EMC TESTS

Figure E-1
Ratio of Dose Rate Relative to an Infinite Ground Plane Source

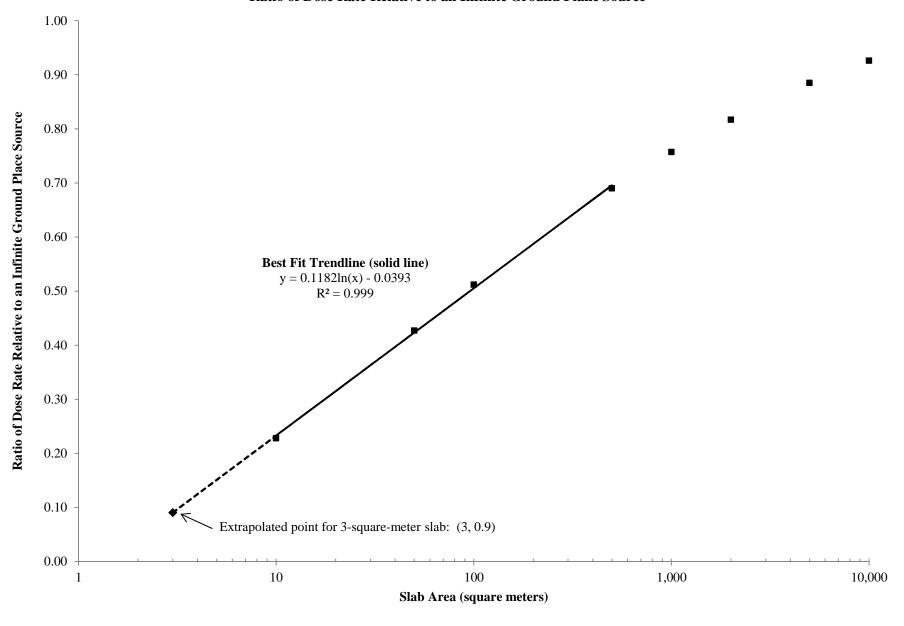


TABLE E-1 DETERMINATION OF AREA FACTORS AND DCGL VALUES FOR GROUND PLANE SOURCES OF VARIOUS SIZE

Size of Ground Plane Source (Slab Size)	Ratio of Dose Rate Relative to Infinite Ground Plane Source (RDRR _{inf}) for Ra-226+D [see Note 1]		Area Factor (AF) Corresponding to RDRR ₁₀₀₀₀ [see Note 3]	DCGL _{EMC} Corresponding to RDRR ₁₀₀₀₀ [see Note 4]
(m^2)	-	-	-	(pCi/g)
3	0.091	0.098	10.2	51
10	0.228	0.246	4.06	20
20	0.315	0.340	2.94	15
50	0.427	0.461	2.17	11
100	0.512	0.553	1.81	9.0
500	0.690	0.745	1.34	6.7
1000	0.757	0.817	1.22	6.1
2000	0.817	0.882	1.13	5.7
5000	0.885	0.956	1.05	5.2
10000	0.926	1.000	1.00	5.0

Notes:

- Except for slab sizes of 3 and 20 m², dose rate ratios are those specified in *Ratios of Dose Rates for Contaminated Slabs*, K.F. Eckerman, September 20, 2007 (see http://epa-prgs.ornl.gov/radionuclides/ContaminatedSlabs.pdf). Dose rate ratios for slab areas of 3 and 20 m² are extrapolated/interpolated from Eckerman data (see Appendix E, Figure E-1).
- Dose ratio relative to 10,000 m² ground plane source calculated by dividing the subject dose rate ratio (relative to infinite ground plane) by 0.926 (i.e, the dose rate ratio relative to infinite ground plane for a slab size of 10,000 m²).
- 3 $AF = 1 / RDRR_{10000}$
- 4 DCGL_{EMC} = DCGL_W x AF; for the Standard Precision, Inc. Site, DCGL_W = 5.0 pCi/g

AF Area factor

 $\begin{array}{ll} DCGL_{EMC} & Derived \ concentration \ guideline \ level \ for \ elevated \ measurement \ comparison \\ DCGL_{W} & Derived \ concentration \ guideline \ level \ for \ average \ concentrations \ over \ a \ wide \ area \end{array}$

 ${
m m}^2$ Square meter ${
m pCi/g}$ picoCuries per gram ${
m Ra-226}$ Radium-226

APPENDIX F LABORATORY DATA

TestAmerica Laboratories, Inc.

ANALYTICAL REPORT

RADIATION - STANDARD PRECISION

Lot #: F2H090435

Rob Monning

Tetra Tech, EMI ARRA 415 Oak Street Kansas City, MO 64106

TESTAMERICA LABORATORIES, INC.

Erika Starman Project Manager

September 7, 2012

Case Narrative LOT NUMBER: F2H090435

This report contains the analytical results for the 29 samples received under chain of custody by TestAmerica St. Louis on August 9, 2012. These samples are associated with your RADIATION - STANDARD PRECISION project.

The analytical results included in this report meet all applicable quality control procedure requirements.

The test results in this report meet all NELAP requirements for parameters in which accreditations are held by TestAmerica St. Louis. Any exceptions to NELAP requirements are noted in the case narrative. **TestAmerica St. Louis' Florida certification number is E87689.** The case narrative is an integral part of this report.

This report shall not be reproduced, except in full, without the written approval of the laboratory.

All chemical analysis results are based upon sample as received, wet weight, unless noted otherwise. All radiochemistry results are based upon sample as dried and ground with the exception of tritium, unless requested wet weight by the client.

Observations/Nonconformances

Reference the chain of custody and condition upon receipt report for any variations on receipt conditions and temperature of samples on receipt.

There were no nonconformances or observations noted with any analysis on this lot.

METHODS SUMMARY

F2H090435

ANALYTICAL PREPARATION METHOD PARAMETER

Gamma Spectroscopy - Radium-226 & Hits EML GA-01-R MOD

References:

EML

"ENVIRONMENTAL MEASUREMENTS LABORATORY PROCEDURES MANUAL" HASL-300 28TH EDITION, VOLUME I and II DEPARTMENT OF ENERGY

SAMPLE SUMMARY

F2H090435

MV226 001 EAST MV228 002 EAST MV229 003 PIPE	D	08/01/12	14.34
MV229 003 PIPE		22/22/22	
	#4	08/01/12	14:40
AAA		08/03/12	14:24
MV23A 004 EAST	В	08/01/12	
MV23C 005 AREA	6 #2	08/02/12	09:58
MV23E 006 AREA	3 #4	08/03/12	11:49
MV23F 007 AREA	3 #5	08/03/12	11:52
MV23G 008 SOUT	H 2	07/31/12	16:02
MV23H 009 PIT-	SOUTH	07/30/12	15:00
MV23J 010 PIPE	#5	08/03/12	15:26
MV23K 011 AREA	6 #6	08/02/12	10:06
MV23L 012 AREA	6 #7R	08/02/12	14:00
MV23M 013 PIT-	NORTH	07/30/12	13:42
MV23N 014 AREA	6#4	08/02/12	10:02
MV23P 015 PIPE	#2	08/03/12	14:22
MV23Q 016 AREA	6 #5	08/02/12	10:04
MV23R 017 AREA	6 #1R	08/02/12	16:10
MV23T 018 PIT-	EAST	07/30/12	13:50
MV23V 019 NORT	H E	08/01/12	14:28
MV23W 020 AREA	3 #2	08/03/12	11:44
MV23X 021 PIPE	#3	08/03/12	14:23
MV230 022 AREA	3 #3	08/03/12	11:47
MV231 023 SOUT	H 1	07/31/12	16:04
MV232 024 EAST	C	08/01/12	14:38
MV233 025 AREA	6 #4R	08/02/12	15:31
MV234 026 PIT	WEST	07/30/12	13:47
MV235 027 NORT	H D	08/01/12	14:25
MV236 028 NORT	H F	08/01/12	14:31
MV238 029 PIPE	#9	08/03/12	16:38

NOTE(S):

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

Tetra Tech, EMI (ARRA) Client Sample ID: EAST A

Radiochemistry

Lab Sample ID: F2H090435-001

Date Collected:

08/01/12 1434

Work Order: Matrix:

MV226 SOLID Date Received:

08/09/12 0940

Parameter	Result	Qual	Total Uncert. (2 g+/-)	RL	mdc	Prep Date	Analysis Date
Gamma Ra-226 & Hi	ts By EML GA-	01-R MOD	po	Ci/g	Batch #	2226077	Yld %
Actinium 227	0.0274	U	0.0897		1.17	08/13/12	09/03/12
Actinium 228	0.778		0.173		0.205	08/13/12	09/03/12
Bismuth 212	0.469	U	0.336		0.494	08/13/12	09/03/12
Bismuth 214	0.801		0.178		0.135	08/13/12	09/03/12
Lead 210	0.248	U	1.14		2.06	08/13/12	09/03/12
Lead 212	0.751		0.156		0.114	08/13/12	09/03/12
Lead 214	0.868		0.193		0.156	08/13/12	09/03/12
Potassium 40	17.9		2.55		1.10	08/13/12	09/03/12
Protactinium 231	0.553	U	0.428		1.80	08/13/12	09/03/12
Radium (226)	0.801		0.178	1.00	0.135	08/13/12	09/03/12
Radium 228	0.778		0.173		0.205	08/13/12	09/03/12
Thallium 208	0.232		0.0672		0.0653	08/13/12	09/03/12
Thorium 234	1.21	U	1.14		1.65	08/13/12	09/03/12
Uranium 235	0.0598	U	0.165		0.455	08/13/12	09/03/12
Uranium 238	1.21	U	1.14		1.65	08/13/12	09/03/12

NOTE (S)

Data are incomplete without the case narrative.

Tetra Tech, EMI (ARRA)

Client Sample ID: EAST A DUP

Radiochemistry

Lab Sample ID: F2H090435-001X

Date Collected:

08/01/12 1434

Work Order: Matrix:

MV226 SOLID Date Received:

08/09/12 0940

Parameter	Result	Qual	Total Uncert. (2 g+/-)	RL	mdc	Prep Date	Analysis Date
Gamma Ra-226 & Hit	s By EML GA-C	1-R MOD	pC	ci/g	Batch #	2226077	Yld %
Actinium 227	-0.0185	U	0.566		0.962	08/13/12	09/03/12
Actinium 228	0,906		0.194		0.105	08/13/12	09/03/12
Bismuth 212	0.454	U	0.441		0.695	08/13/12	09/03/12
Bismuth 214	0.779		0.196		0.123	08/13/12	09/03/12
Lead 210	0.578	U	1.33		2.25	08/13/12	09/03/12
Lead 212	0.687		0.161	0.73	0.127	08/13/12	09/03/12
Lead 214	0.858		0.165		0.145	08/13/12	09/03/12
Potassium 40	20.8		3.07		0.669	08/13/12	09/03/12
Protactinium 231	0.361	u	0.337		2.37	08/13/12	09/03/12
Radium (226)	0.779		0.196	1.00	0.123	08/13/12	09/03/12
Radium 228	0.906		0.194		0.105	08/13/12	09/03/12
Thallium 208	0.252		0.0797		0.0636	08/13/12	09/03/12
Thorium 234	0.349	U	0.696		2.26	08/13/12	09/03/12
Uranium 235	0.249	U	0.252		0.414	08/13/12	09/03/12
Uranium 238	0.349	U	0.696		2.26	08/13/12	09/03/12

Data are incomplete without the case narrative.

08/13/12 09/03/12

08/13/12 09/03/12

08/13/12 09/03/12

08/13/12 09/03/12

08/13/12 09/03/12

08/13/12 09/03/12

Tetra Tech, EMI (ARRA) Client Sample ID: EAST D

Radiochemistry

Lab Sample ID: F2H090435-002

Date Collected:

08/01/12 1440

Work Order: Matrix:

Radium (226)

Thallium 208

Thorium 234

Uranium 235

Uranium 238

Radium 228

MV228 SOLID

2.51

0.852

0.573

1.10

0.192

1.10

Date Received:

1.00

0.208

0.667

0.142

3.97

0.788

3.97

08/09/12 0940

Parameter	Result	Qual	Uncert. (2 g+/-)	RL	mdc	Prep Date	Analysis Date	
Gamma Ra-226 & Hit	ts By EML GA-	01-R MOD	p	Ci/g	Batch #	2226077	Yld %	
Actinium 227	0.0858	U	0.940		2.43	08/13/12	09/03/12	
Actinium 228	0,852		0.351		0.667	08/13/12	09/03/12	
Bismuth 212	0.0	U	0.968		1.52	08/13/12	09/03/12	
Bismuth 214	2.51		0.473		0.208	08/13/12	09/03/12	
Lead 210	6.61		3.79		4.41	08/13/12	09/03/12	
Lead 212	1.30		0.276		0.212	08/13/12	09/03/12	
Lead 214	2.32		0.445		0.253	08/13/12	09/03/12	
Potassium 40	19.5		3.74		1.44	08/13/12	09/03/12	
Protactinium 231	0.873	U	1.13		3.36	08/13/12	09/03/12	

0.473

0.351

0.177

1.07

0.453

1.07

U

U

U

NOTE (S)

Data are incomplete without the case narrative.

Tetra Tech, EMI (ARRA) Client Sample ID: PIPE #4

Radiochemistry

Lab Sample ID: F2H090435-003

Date Collected:

08/03/12 1424

Work Order: Matrix:

MV229 SOLID Date Received:

08/09/12 0940

Parameter	Result	Qual	Total Uncert. (2 σ +/-)	RL	mdc	Prep Date	Analysis Date
Gamma Ra-226 & Hit	s By EML GA-0	1-R MOD	p	Ci/g	Batch #	2226077	Yld %
Actinium 227	-0.0663	U	0.229		0.399	08/13/12	09/03/12
Actinium 228	0.609		0.206		0.199	08/13/12	09/03/12
Bismuth 212	0.0271	U	0.422		0.782	08/13/12	09/03/12
Bismuth 214	0.423		0.135		0.125	08/13/12	09/03/12
Lead 210	0.453	U	1.20		2.14	08/13/12	09/03/12
Lead 212	0.577		0.127		0.0801	08/13/12	09/03/12
Lead 214	0.580		0.168		0.140	08/13/12	09/03/12
Potassium 40	21.2		3.26		0.767	08/13/12	09/03/12
Protactinium 231	0.644	U	0.534		1.87	08/13/12	09/03/12
Radium (226)	0.423		0.135	1.00	0.125	08/13/12	09/03/12
Radium 228	0.609		0.206		0.199	08/13/12	09/03/12
Thallium 208	0.186		0.0757		0.0675	08/13/12	09/03/12
Thorium 234	0.960	U	0.957		1.59	08/13/12	09/03/12
Uranium 235	0.193	U	0.220		0.329	08/13/12	09/03/12
Uranium 238	0.960	U	0.957		1.59	08/13/12	09/03/12

NOTE (S)

Data are incomplete without the case narrative.

Tetra Tech, EMI (ARRA) Client Sample ID: EAST B

Radiochemistry

Lab Sample ID: F2H090435-004

Date Collected:

08/01/12 1436

Work Order: Matrix:

MV23A SOLID Date Received:

08/09/12 0940

Parameter	Result	Qual	Total Uncert. (2 g+/-)	RL	mdo	Prep Date	Analysis Date
Gamma Ra-226 & Hi	ts By EML GA-	01-R MOD	po	i/g	Batch #	2226077	Yld %
Actinium 227	0.198	Ω	0.227		0.472	08/13/12	09/03/12
Actinium 228	1.00		0.229		0.0784	08/13/12	09/03/12
Bismuth 212	0.422	U	0.347		0.529	08/13/12	09/03/12
Bismuth 214	1.42		0.246		0.136	08/13/12	09/03/12
Lead 210	1.80	U	1.39		1.98	08/13/12	09/03/12
Lead 212	0.733		0.139		0.0921	08/13/12	09/03/12
Lead 214	1.54		0.255		0.142	08/13/12	09/03/12
Potassium 40	20.4		2.80		0.647	08/13/12	09/03/12
Protactinium 231	0.736	U	0.779		1.60	08/13/12	09/03/12
Radium (226)	1.42		0.246	1.00	0.136	08/13/12	09/03/12
Radium 228	1.00		0.229		0.0784	08/13/12	09/03/12
Thallium 208	0.291		0.0789		0.0659	08/13/12	09/03/12
Thorium 234	0.717	U	0.624		2.05	08/13/12	09/03/12
Uranium 235	0.149	σ	0.253		0.422	08/13/12	09/03/12
Uranium 238	0.717	U	0.624		2.05	08/13/12	09/03/12

Data are incomplete without the case narrative.

Tetra Tech, EMI (ARRA)

Client Sample ID: AREA 6 #2

Radiochemistry

Lab Sample ID: F2H090435-005

Date Collected:

08/02/12 0958

Work Order: Matrix:

MV23C SOLID Date Received:

08/09/12 0940

Parameter	Result	Qual	Total Uncert. (2 gt/-)	RL:	mdc	Prep Date	Analysis Date
Gamma Ra-226 & Hit	ts By EML GA-0	1-R MOD	pC	i/g	Batch #	2226077	Yld %
Actinium 227	0.554	U	0.387		0.593	08/13/12	09/03/12
Actinium 228	1.48		0.352		0.250	08/13/12	09/03/12
Bismuth 212	0.411	U	0.600		0.998	08/13/12	09/03/12
Bismuth 214	4.99		0.667		0.176	08/13/12	09/03/12
Lead 210	4.34		2.90		3.41	08/13/12	09/03/12
Lead 212	1.10		0.227		0.210	08/13/12	09/03/12
Lead 214	5.58		0.702		0.270	08/13/12	09/03/12
Potassium 40	18.3		2.96		0.812	08/13/12	09/03/12
Protactinium 231	0.449	U	0.880		3.86	08/13/12	09/03/12
Radium (226)	4.99		0.667	1.00	0.176	08/13/12	09/03/12
Radium 228	1.48		0.352		0.250	08/13/12	09/03/12
Thallium 208	0.586		0.148		0.110	08/13/12	09/03/12
Thorium 234	3.04	U	2.60		3.23	08/13/12	09/03/12
Uranium 235	-0.0450	U	2.36		0.915	08/13/12	09/03/12
Uranium 238	3.04	U	2.60		3.23	08/13/12	09/03/12

NOTE (S)

Data are incomplete without the case narrative.

Tetra Tech, EMI (ARRA) Client Sample ID: AREA 3 #4

Radiochemistry

Lab Sample ID: F2H090435-006

Date Collected:

08/03/12 1149

Work Order: Matrix:

MV23E SOLID Date Received:

08/09/12 0940

Parameter	Result	Qual	Total Uncert. (2 g+/-)	RL	mdc	Prep Date	Analysis Date
Gamma Ra-226 & Hi	ts By EML GA-0	1-R MOD	p(Ci/g	Batch #	2226077	Yld %
Actinium 227	0.0226	U	0.165		1.53	08/13/12	09/03/12
Actinium 228	0.948		0.267		0.176	08/13/12	09/03/12
Bismuth 212	1.13		0.362		0.190	08/13/12	09/03/12
Bismuth 214	1.43		0.261		0.162	08/13/12	09/03/12
Lead 210	2.45	U	1.83		2,48	08/13/12	09/03/12
Lead 212	0.927		0.182		0.152	08/13/12	09/03/12
Lead 214	1.69		0.271		0.186	08/13/12	09/03/12
Potassium 40	20.9		2.95		0.501	08/13/12	09/03/12
Protactinium 231	0.734	U	0.418		2.66	08/13/12	09/03/12
Radium (226)	1.43		0.261	1.00	0.162	08/13/12	09/03/12
Radium 228	0.948		0.267		0.176	08/13/12	09/03/12
Thallium 208	0.335		0.0924		0.0792	08/13/12	09/03/12
Thorium 234	0.790	U	0.789		2.52	08/13/12	09/03/12
Uranium 235	-0.0690	U	50.2		0.538	08/13/12	09/03/12
Uranium 238	0.790	U	0.789		2.52	08/13/12	09/03/12

Data are incomplete without the case narrative.

Tetra Tech, EMI (ARRA) Client Sample ID: AREA 3 #5

Radiochemistry

Lab Sample ID: F2H090435-007

Date Collected:

08/03/12 1152

Work Order: Matrix:

MV23F SOLID Date Received:

08/09/12 0940

To	ta	1	
**-		_	

Parameter	Result	Qual .	Uncert. (2 g+/-)	RL	mdc	Prep Date	Analysis Date
Gamma Ra-226 & Hit	ts By EML GA-	01-R MOD	1	Ci/g	Batch #	2226077	Yld %
Actinium 227	0.137	U	0.425		1.42	08/13/12	09/03/12
Actinium 228	0.996		0.230		0.102	08/13/12	09/03/12
Bismuth 212	0.209	U	0.397		0.678	08/13/12	09/03/12
Bismuth 214	0.905		0.193		0.137	08/13/12	09/03/12
Lead 210	0.649	U	1.38		2.43	08/13/12	09/03/12
Lead 212	0.948		0.178		0.124	08/13/12	09/03/12
Lead 214	0.977		0.200		0.147	08/13/12	09/03/12
Potassium 40	18.3		2.76		0.679	08/13/12	09/03/12
Protactinium 231	0.602	U	0.765		1.92	08/13/12	09/03/12
Radium (226)	0.905		0.193	1.00	0.137	08/13/12	09/03/12
Radium 228	0.996		0.230		0.102	08/13/12	09/03/12
Thallium 208	0.353		0.0951		0.0712	08/13/12	09/03/12
Thorium 234	0.728	U	0.629		1.83	08/13/12	09/03/12
Uranium 235	0.189	U	0.259		0.413	08/13/12	09/03/12
Uranium 238	0.728	U	0.629		1.83	08/13/12	09/03/12

Data are incomplete without the case narrative.

Client Sample ID: SOUTH 2

Radiochemistry

Lab Sample ID: F2H090435-008

Date Collected:

07/31/12 1602

Work Order: Matrix:

MV23G SOLID Date Received:

08/09/12 0940

Parameter	Result	Qual	Total Uncert. (2 g+/-)	RL	mde	Prep Date	Analysis Date
Gamma Ra-226 & Hi	ts By EML GA-	01-R MOD	pC	i/g	Batch #	2226077	Yld %
Actinium 227	-0.392	ū	0.500		0.821	08/13/12	09/03/12
Actinium 228	0.672		0.213		0.319	08/13/12	09/03/12
Bismuth 212	0.228	U	0.374		0.631	08/13/12	09/03/12
Bismuth 214	2.60		0.388		0.162	08/13/12	09/03/12
Lead 210	3.84		1.66		2.22	08/13/12	09/03/12
Lead 212	0.811		0.168		0.154	08/13/12	09/03/12
Lead 214	2.86		0.396		0.166	08/13/12	09/03/12
Potassium 40	16.6		2.51		0.855	08/13/12	09/03/12
Protactinium 231	0.0846	U	0.138		2.51	08/13/12	09/03/12
Radium (226)	2.60		0.388	1.00	0.162	08/13/12	09/03/12
Radium 228	0.672		0.213		0.319	08/13/12	09/03/12
Thallium 208	0.298		0.118		0.108	08/13/12	09/03/12
Thorium 234	1.32	U	0.854		2.16	08/13/12	09/03/12
Uranium 235	0.0268	ū	0.0604		0.560	08/13/12	09/03/12
Uranium 238	1.32	U	0.854		2.16	08/13/12	09/03/12

NOTE (S)

Data are incomplete without the case narrative.

Client Sample ID: PIT-SOUTH

Radiochemistry

Lab Sample ID: F2H090435-009

MV23H

Work Order: Matrix:

SOLID

Date Collected: Date Received:

07/30/12 1500

08/09/12 0940

Analysis

			Total Uncert.		
Parameter	Result	Qual	(2 5+/-)	RL,	mdc
Gamma Ra-226 & Hi	ts By EML GA-	01-R MOD	po	Ci/g	Bato

Parameter	Result	Qual	(2 5+/-)	RL	mdc	Date	Date
Gamma Ra-226 & Hit	s By EML GA-	01-R MOD	p	Ci/g	Batch #	2226077	Yld %
Actinium 227	0.153	U	0.126		0.220	08/13/12	09/03/12
Actinium 228	0.513		0.147		0.298	08/13/12	09/03/12
Bismuth 212	0.124	U	0.300		0.523	08/13/12	09/03/12
Bismuth 214	0.468		0.132		0.123	08/13/12	09/03/12
Lead 210	0.418	U	0.866		1.53	08/13/12	09/03/12
Lead 212	0.400		0.101		0.0941	08/13/12	09/03/12
Lead 214	0.426		0.131		0.133	08/13/12	09/03/12
Potassium 40	21.2		2.90		0.937	08/13/12	09/03/12
Protactinium 231	0.169	U	0.272		1.61	08/13/12	09/03/12
Radium (226)	0.468		0.132	1.00	0.123	08/13/12	09/03/12
Radium 228	0.513		0.147		0.298	08/13/12	09/03/12
Thallium 208	0.186		0.0773		0.0743	08/13/12	09/03/12
Thorium 234	0.684	U	0.878		1.55	08/13/12	09/03/12
Uranium 235	0.0926	U	0.145		0.357	08/13/12	09/03/12
Uranium 238	0.684	U	0.878		1.55	08/13/12	09/03/12

Tetra Tech, EMI (ARRA) Client Sample ID: PIPE #5

Radiochemistry

Lab Sample ID: F2H090435-010

MV23J

Work Order: Matrix:

SOLID

Date Collected: Date Received:

08/03/12 1526

08/09/12 0940

		01	Total Uncert. (2 g+/-)		-3-	Prep Date	Analysis Date
Parameter	Result	Qual	- 0	RL	mdc		
Gamma Ra-226 & Hi	ts By EML GA-	01-R MOD	P	Ci/g	Batch #	2226077	Yld %
Actinium 227	-0.444	U	0.259		0.383	08/13/12	09/03/12
Actinium 228	0.694		0.184		0.0790	08/13/12	09/03/12
Bismuth 212	0.359	ū	0.336		0.525	08/13/12	09/03/12
Bismuth 214	0.656		0.167		0.131	08/13/12	09/03/12
Lead 210	1.72	U	1.52		2.01 .	08/13/12	09/03/12
Lead 212	0.603		0.145		0.123	08/13/12	09/03/12
Lead 214	0.635		0.155		0.131	08/13/12	09/03/12
Potassium 40	21.5		2.92		0.652	08/13/12	09/03/12
Protactinium 231	0.341	U	0.636		1.78	08/13/12	09/03/12
Radium (226)	0.656		0.167	1.00	0.131	08/13/12	09/03/12
Radium 228	0.694		0.184		0.0790	08/13/12	09/03/12
Thallium 208	0.239		0.0624		0.0508	08/13/12	09/03/12
Thorium 234	0.793	U	1.06		1.79	08/13/12	09/03/12
Uranium 235	0.114	U	0.202		0.351	08/13/12	09/03/12
Uranium 238	0.793	U	1.06		1.79	08/13/12	09/03/12

NOTE (S)

Data are incomplete without the case narrative.

Client Sample ID: AREA 6 #6

Radiochemistry

Lab Sample ID: F2H090435-011

Date Collected:

08/02/12 1006

Work Order: Matrix:

MV23K SOLID

Date Received:

08/09/12 0940

Parameter	Result	Qual	Uncert. (2 g+/-)	RL	mdc	Prep Date	Analysis Date
Gamma Ra-226 & Hit	s By EML GA-	01-R MOD	pC	i/g	Batch #	2226077	Yld %
Actinium 227	0.0660	U	0.864		2.54	08/13/12	09/03/12
Actinium 228	1.02		0.402		0.485	08/13/12	09/03/12
Bismuth 212	0.640	U	0.867		1.43	08/13/12	09/03/12
Bismuth 214	1.50		0.384		0.266	08/13/12	09/03/12
Lead 210	1.52	U	2.19		3.46	08/13/12	09/03/12
Lead 212	1.28		0.296		0.229	08/13/12	09/03/12
Lead 214	1.50		0.338		0.280	08/13/12	09/03/12
Potassium 40	16.8		3.52		1.56	08/13/12	09/03/12
Protactinium 231	0.512	U	1.03		3.75	08/13/12	09/03/12
Radium (226)	1.50		0.384	1.00	0.266	08/13/12	09/03/12
Radium 228	1.02		0.402		0.485	08/13/12	09/03/12
Thallium 208	0.504		0.155		0.124	08/13/12	09/03/12
Thorium 234	1.48	ū	1.82		2.86	08/13/12	09/03/12
Uranium 235	0.159	U	0.377		0.731	08/13/12	09/03/12
Uranium 238	1.48	U	1.82		2.86	08/13/12	09/03/12

Data are incomplete without the case narrative.

Client Sample ID: AREA 6 #7R

Radiochemistry

Work Order:

Matrix:

Lab Sample ID: F2H090435-012

MV23L SOLID

Date Collected:

08/02/12 1400

Date Received:

08/09/12 0940

Total
Uncert
(2 0+/

Parameter	Result	Qual	(2 c+/-)	RL	mdc	Prep Date	Analysis Date
Gamma Ra-226 & Hit	s By EML GA-	01-R MOD	p	Ci/g	Batch #	2226077	Yld %
Actinium 227	-0.117	U	0.415		0.706	08/13/12	09/03/12
Actinium 228	0.712		0.286		0.406	08/13/12	09/03/12
Bismuth 212	0.612	U	0.523		0.802	08/13/12	09/03/12
Bismuth 214	3.69		0.534		0.207	08/13/12	09/03/12
Lead 210	2.66	U	2.00		3,23	08/13/12	09/03/12
Lead 212	0.934		0.189		0.150	08/13/12	09/03/12
Lead 214	4.00		0.524		0.222	08/13/12	09/03/12
Potassium 40	19.2		3.10		1.06	08/13/12	09/03/12
Protactinium 231	1.03	U	0.894		3.53	08/13/12	09/03/12
Radium (226)	3.69		0.534	1.00	0.207	08/13/12	09/03/12
Radium 228	0.712		0.286		0.406	08/13/12	09/03/12
Thallium 208	0.416		0.135		0.112	08/13/12	09/03/12
Thorium 234	0.714	U	0.791		2.99	08/13/12	09/03/12
Uranium 235	0.186	U	0.176		0.692	08/13/12	09/03/12
Uranium 238	0.714	U	0.791		2.99	08/13/12	09/03/12

NOTE (S)

Data are incomplete without the case narrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC.

Result is less than the sample detection limit.

Client Sample ID: PIT-NORTH

Radiochemistry

Lab Sample ID: F2H090435-013

Date Collected:

07/30/12 1342

Work Order: Matrix:

MV23M SOLID Date Received:

08/09/12 0940

Parameter	Result	Qual	Total Uncert. (2 g+/-)	RL	mdc	Prep Date	Analysis Date
Gamma Ra-226 & Hit	s By EML GA-C	1-R MOD	p(Ci/g	Batch #	2226077	Yld %
Actinium 227	-0.160	U	0.311		0.521	08/13/12	09/03/12
Actinium 228	0.295	U	0.152		0.301	08/13/12	09/03/12
Bismuth 212	0.00275	U	0.376		0.682	08/13/12	09/03/12
Bismuth 214	1.17		0.227		0.153	08/13/12	09/03/12
Lead 210	1.65	U	1.50		2,18	08/13/12	09/03/12
Lead 212	0.564		0.121		0.105	08/13/12	09/03/12
Lead 214	1.46		0.233		0.117	08/13/12	09/03/12
Potassium 40	21.7		2.97		0.457	08/13/12	09/03/12
Protactinium 231	0.208	U	1.11		1.94	08/13/12	09/03/12
Radium (226)	1.17		0.227	1.00	0.153	08/13/12	09/03/12
Radium 228	0.295	U	0.152		0.301	08/13/12	09/03/12
Thallium 208	0.195		0.0774		0.0778	08/13/12	09/03/12
Thorium 234	0.135	U	0.557		2.23	08/13/12	09/03/12
Uranium 235	0.0396	U	0.275		0.478	08/13/12	09/03/12
Uranium 238	0.135	U	0.557		2.23	08/13/12	09/03/12

NOTE (S)

Data are incomplete without the case narrative.

Tetra Tech, EMI (ARRA) Client Sample ID: AREA 6#4

Radiochemistry

Lab Sample ID: F2H090435-014 Work Order:

MV23N

Matrix:

SOLID

Date Collected: Date Received:

08/02/12 1002

08/09/12 0940

Parameter	Result	Qual	Total Uncert. (2 g+/-)	RL	mdc	Prep Date	Analysis Date
Gamma Ra-226 & Hit	s By EML GA-	01-R MOD	1	pCi/g	Batch #	2226077	Yld %
Actinium 227	0.723	U	0.916		1.86	08/13/12	09/05/12
Actinium 228	2.12		1.02		1.26	08/13/12	09/05/12
Bismuth 212	-0.580	U	1.57		2.66	08/13/12	09/05/12
Bismuth 214	44.6		4.86		0.611	08/13/12	09/05/12
Lead 210	23.7		6.80		7.88	08/13/12	09/05/12
Lead 212	1.07		0.355		0.495	08/13/12	09/05/12
Lead 214	47.6		5.08		0.724	08/13/12	09/05/12
Potassium 40	21.2		4.28		2.69	08/13/12	09/05/12
Protactinium 231	1.42	U	3.04		9.61	08/13/12	09/05/12
Radium (226)	44.6		4.86	1.00	0.611	08/13/12	09/05/12
Radium 228	2.12		1.02		1.26	08/13/12	09/05/12
Thallium 208	0.350	υ	0.284		0.380	08/13/12	09/05/12
Thorium 234	1.62	U	5.40		9.00	08/13/12	09/05/12
Uranium 235	-1.03	U	1.37		2.25	08/13/12	09/05/12
Uranium 238	1.62	U	5.40		9.00	08/13/12	09/05/12

NOTE (S)

Data are incomplete without the case narrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC.

Result is less than the sample detection limit. 19 of 47

Client Sample ID: PIPE #2

Radiochemistry

Lab Sample ID: F2H090435-015

Date Collected:

08/03/12 1422

Work Order: Matrix:

MV23P SOLID Date Received:

08/09/12 0940

T	0	t	a	1	
U	n	C	e	r	t

Parameter	Result	Qual	Uncert. (2 g+/-)	RL	mdc	Prep Date	Analysis Date
Gamma Ra-226 & Hit	ts By EML GA-0	1-R MOD	p	Ci/g	Batch #	2226077	Yld %
Actinium 227	-0.884	U	0.597		0.940	08/13/12	09/03/12
Actinium 228	0.915		0.241		0.235	08/13/12	09/03/12
Bismuth 212	-0.0191	U	0.372		0.672	08/13/12	09/03/12
Bismuth 214	4.79		0.609		0.178	08/13/12	09/03/12
Lead 210	2.46	U	2.40		3.13	08/13/12	09/03/12
Lead 212	0.623		0.147		0.158	08/13/12	09/03/12
Lead 214	4.88		0.584		0.202	08/13/12	09/03/12
Potassium 40	20.8		2.92		0.818	08/13/12	09/03/12
Protactinium 231	1.11	U	1.09		2.45	08/13/12	09/03/12
Radium (226)	4.79		0.609	1.00	0.178	08/13/12	09/03/12
Radium 228	0.915		0.241		0.235	08/13/12	09/03/12
Thallium 208	0.258		0.0954		0.0884	08/13/12	09/03/12
Thorium 234	0.840	U	1.73		2.94	08/13/12	09/03/12
Uranium 235	-0.165	U	0.812		0.652	08/13/12	09/03/12
Uranium 238	0.840	U	1.73		2.94	08/13/12	09/03/12

Data are incomplete without the case narrative.

Client Sample ID: AREA 6 #5

Radiochemistry

Lab Sample ID: F2H090435-016 Work Order:

Matrix:

MV23Q SOLID

Date Collected: Date Received:

08/02/12 1004

08/09/12 0940

Total

Parameter	Result	Qual	Undert. (2 g+/-)	RL	mdc	Prep Date	Analysis Date
Gamma Ra-226 & Hit	s By EML GA-(1-R MOD	po	Ci/g	Batch #	2226077	Yld %
Actinium 227	-0.649	U	0.599		0.966	08/13/12	09/03/12
Actinium 228	1.23		0.321		0.288	08/13/12	09/03/12
Bismuth 212	0.114	U	0.401		0.709	08/13/12	09/03/12
Bismuth 214	2.88		0.436		0.210	08/13/12	09/03/12
Lead 210	1.75	U	1.81		2.61	08/13/12	09/03/12
Lead 212	1.17		0.228		0.170	08/13/12	09/03/12
Lead 214	3.13		0.418		0.225	08/13/12	09/03/12
Potassium 40	18.5		2.75		1.06	08/13/12	09/03/12
Protactinium 231	0.870	U	0.770		2.00	08/13/12	09/03/12
Radium (226)	2.88		0.436	1.00	0.210	08/13/12	09/03/12
Radium 228	1.23		0.321		0.288	08/13/12	09/03/12
Thallium 208	0.407		0.111		0.0990	08/13/12	09/03/12
Thorium 234	0.556	U	0.823		2.98	08/13/12	09/03/12
Uranium 235	0.321	U	0.362		0.602	08/13/12	09/03/12
Uranium 238	0.556	U	0.823		2.98	08/13/12	09/03/12

Data are incomplete without the case narrative.

Tetra Tech, EMI (ARRA) Client Sample ID: AREA 6 #1R

Radiochemistry

Lab Sample ID: F2H090435-017 Work Order:

MV23R

Matrix:

SOLID

Date Collected:

08/02/12 1610

Date Received:

08/09/12 0940

Parameter	Result	Qual	Total Uncert. (2 g+/-)	RL	mdc	Prep Date	Analysis Date
Gamma Ra-226 & Hi	ts By EML GA-	01-R MOD	po	Ci/g	Batch #	2226082	Yld %
Actinium 227	-0.770	U	0.626		1.00	08/13/12	09/05/12
Actinium 228	1.48		0.322		0.278	08/13/12	09/05/12
Bismuth 212	1.17		0.642		0.635	08/13/12	09/05/12
Bismuth 214	2.84		0.427		0.162	08/13/12	09/05/12
Lead 210	2.32	ū	2.06		2.83	08/13/12	09/05/12
Lead 212	1.35		0.235		0.151	08/13/12	09/05/12
Lead 214	3.37		0.446		0.191	08/13/12	09/05/12
Potassium 40	20.8		3.17		0.724	08/13/12	09/05/12
Protactinium 231	1.76	U	1.14		2.10	08/13/12	09/05/12
Radium (226)	2.84		0.427	1.00	0.162	08/13/12	09/05/12
Radium 228	1.48		0.322		0.278	08/13/12	09/05/12
Thallium 208	0.549		0.122		0.0746	08/13/12	09/05/12
Thorium 234	0.772	U	0.856		2.76	08/13/12	09/05/12
Uranium 235	0.0137	U	0.267		0.584	08/13/12	09/05/12
Uranium 238	0.772	U	0.856		2.76	08/13/12	09/05/12

Data are incomplete without the case narrative.

Tetra Tech, EMI (ARRA) Client Sample ID: AREA 6 #1R DUP

Radiochemistry

Lab Sample ID: F2H090435-017X

Work Order:

Matrix:

MV23R SOLID Date Collected:

08/02/12 1610

Date Received: 08/09/12 0940

			Total Uncert.			Prep	Analysis
Parameter	Result	Qual	(2 5+/-)	RI.	mdc	Date	Date
Gamma Ra-226 & Hi	ts By EML GA-	01-R MOD	p	Ci/g	Batch #	2226082	Yld %
Actinium 227	0.0453	U	0.127		2.00	08/13/12	09/05/12
Actinium 228	1.35		0.292		0.281	08/13/12	09/05/12
Bismuth 212	0.620	U	0.496		0.754	08/13/12	09/05/12
Bismuth 214	2.98		0.443		0.186	08/13/12	09/05/12
Lead 210	1.35	U	1.99		2.95	08/13/12	09/05/12
Lead 212	1.41		0.254		0.178	08/13/12	09/05/12
Lead 214	3.30		0.451		0.220	08/13/12	09/05/12
Potassium 40	20.6		3.16		1.18	08/13/12	09/05/12
Protactinium 231	1.52	U	1.01		3.17	08/13/12	09/05/12
Radium (226)	2.98		0.443	1.00	0.186	08/13/12	09/05/12
Radium 228	1.35		0.292		0.281	08/13/12	09/05/12
Thallium 208	0.497		0.118		0.0945	08/13/12	09/05/12
Thorium 234	0.839	U	0.708		3.02	08/13/12	09/05/12
Uranium 235	0.338	U	0.304		0.722	08/13/12	09/05/12
Uranium 238	0.839	U	0.708		3.02	08/13/12	09/05/12

NOTE (S)

Data are incomplete without the case narrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC.

U Result is less than the sample detection limit. 23 of 47

Client Sample ID: PIT-EAST

Radiochemistry

Lab Sample ID: F2H090435-018

Date Collected:

07/30/12 1350

Work Order: Matrix:

MV23T SOLID Date Received:

08/09/12 0940

Parameter			Total Uncert.			Prep Date	Analysis Date
	Result	Qual	(2 σ+/-)	RL	mdc	2400	
Gamma Ra-226 & Hits By EML GA-01-R MOD		pq	ci/g	Batch #	2226082	Yld %	
Actinium 227	-0.0456	U	0.0998		0.589	08/13/12	09/03/12
Actinium 228	0.270		0.176		0.239	08/13/12	09/03/12
Bismuth 212	0.0531	U	0.364		0.662	08/13/12	09/03/12
Bismuth 214	0.827		0.185		0.0916	08/13/12	09/03/12
Lead 210	0.446	U	1.29		2.20	08/13/12	09/03/12
Lead 212	0.412		0.106		0.107	08/13/12	09/03/12
Lead 214	0.871		0.181		0.108	08/13/12	09/03/12
Potassium 40	19.8		2.93		0.649	08/13/12	09/03/12
Protactinium 231	-0.316	U	1.14		1.97	08/13/12	09/03/12
Radium (226)	0.827		0.185	1.00	0.0916	08/13/12	09/03/12
Radium 228	0.270		0.176		0.239	08/13/12	09/03/12
Thallium 208	0.0869	U	0.0737		0.0961	08/13/12	09/03/12
Thorium 234	1.35	U	1.24		1.61	08/13/12	09/03/12
Uranium 235	0.0890	U	0.149		0.437	08/13/12	09/03/12
Uranium 238	1.35	U	1.24		1.61	08/13/12	09/03/12

NOTE (S)

Data are incomplete without the case narrative.

Tetra Tech, EMI (ARRA) Client Sample ID: NORTH E

Radiochemistry

Lab Sample ID: F2H090435-019

Matrix:

MV23V

Date Collected: Date Received:

08/01/12 1428 08/09/12 0940

Work Order: SOLID

			Total Uncert.			Prep	Analysis
Parameter	Result	Qual	(2 σ+/-)	RL	mdc	Date	Date
Gamma Ra-226 & Hit	s By EML GA-	01-R MOD	po	ci/g	Batch #	2226082	Yld %
Actinium 227	0.108	U	0.200		1.15	08/13/12	09/03/12
Actinium 228	0.537		0.166		0.255	08/13/12	09/03/12
Bismuth 212	0.151	U	0.319		0.550	08/13/12	09/03/12
Bismuth 214	0.473		0.140		0.141	08/13/12	09/03/12
Lead 210	1.97	U	1.36		2.03	08/13/12	09/03/12
Lead 212	0.609		0.132		0.123	08/13/12	09/03/12
Lead 214	0.642		0.150		0.162	08/13/12	09/03/12
Potassium 40	18.2		2.57		0.448	08/13/12	09/03/12
Protactinium 231	0.102	U	0.164		2.13	08/13/12	09/03/12
Radium (226)	0.473		0.140	1.00	0.141	08/13/12	09/03/12
Radium 228	0.537		0.166		0.255	08/13/12	09/03/12
Thallium 208	0.253		0.0808		0.0682	08/13/12	09/03/12
Thorium 234	0.959	U	0.489		2.19	08/13/12	09/03/12
Uranium 235	0.0757	ū	0.120		0.459	08/13/12	09/03/12
Uranium 238	0.959	σ	0.489		2.19	08/13/12	09/03/12

NOTE (S)

Data are incomplete without the case narrative.

Client Sample ID: AREA 3 #2

Radiochemistry

Lab Sample ID: F2H090435-020

Work Order:

Matrix:

MV23W SOLID Date Collected:

08/03/12 1144

Date Received:

08/09/12 0940

Parameter			Total Uncert.			Prep	Analysis Date
	Result	Qual	(2 s+/-) RL	RL	mdc	Date	
Gamma Ra-226 & Hit	ts By EML GA-	01-R MOD	pC	i/g	Batch #	2226082	Yld %
Actinium 227	0.0857	U	0.149		1.45	08/13/12	09/03/12
Actinium 228	1.10		0.257		0.285	08/13/12	09/03/12
Bismuth 212	0.651	U	0.453		0.657	08/13/12	09/03/12
Bismuth 214	1.96		0.327		0.166	08/13/12	09/03/12
Lead 210	4.29		1.82		2.34	08/13/12	09/03/12
Lead 212	0.875		0.175		0.139	08/13/12	09/03/12
Lead 214	1.62		0.281		0.168	08/13/12	09/03/12
Potassium 40	19.2		2.91		0.730	08/13/12	09/03/12
Protactinium 231	0.421	U	0.481		2.14	08/13/12	09/03/12
Radium (226)	1.96		0.327	1.00	0.166	08/13/12	09/03/12
Radium 228	1.10		0.257		0.285	08/13/12	09/03/12
Thallium 208	0.254		0.0971		0.0927	08/13/12	09/03/12
Thorium 234	0.975	U	0.726		2.19	08/13/12	09/03/12
Uranium 235	0.187	U	0.302		0.542	08/13/12	09/03/12
Uranium 238	0.975	U	0.726		2.19	08/13/12	09/03/12

NOTE (S)

Data are incomplete without the case narrative.

Client Sample ID: PIPE #3

Radiochemistry

Lab Sample ID: F2H090435-021

Work Order:

Matrix:

MV23X SOLID Date Collected:

08/03/12 1423

Date Received:

180	09/12	0940

Parameter	Result	Qual	Total Uncert. (2 g+/-)	RL	mdc	Prep Date	Analysis Date
Gamma Ra-226 & Hi	ts By EML GA-0	1-R MOD	p(Ci/g	Batch #	2226082	Yld %
Actinium 227	0.112	U	0.227		0.312	08/13/12	09/03/12
Actinium 228	0.722		0.192		0.136	08/13/12	09/03/12
Bismuth 212	-0.0875	υ	0.357		0.630	08/13/12	09/03/12
Bismuth 214	0.759		0.167		0.160	08/13/12	09/03/12
Lead 210	1.38	σ	1.67		2.31	08/13/12	09/03/12
Lead 212	0.597		0.128		0.115	08/13/12	09/03/12
Lead 214	1.07		0.179		0.122	08/13/12	09/03/12
Potassium 40	20.4		2.81		0.627	08/13/12	09/03/12
Protactinium 231	0.177	U	0.326		2.05	08/13/12	09/03/12
Radium (226)	0.759		0.167	1.00	0.160	08/13/12	09/03/12
Radium 228	0.722		0.192		0.136	08/13/12	09/03/12
Thallium 208	0.216		0.0669		0.0624	08/13/12	09/03/12
Thorium 234	1.52	U	1.23		1.70	08/13/12	09/03/12
Uranium 235	-0.0114	U	0.0490		0.316	08/13/12	09/03/12
Uranium 238	1.52	U	1.23		1.70	08/13/12	09/03/12

Data are incomplete without the case narrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC.

Result is less than the sample detection limit.

Client Sample ID: AREA 3 #3

Radiochemistry

Lab Sample ID: F2H090435-022 Work Order:

Matrix:

MV230 SOLID Date Collected: Date Received:

08/03/12 1147

08/09/12 0940

Parameter	Result	Qual	Total Uncert. (2 g+/-)	RL	mdc	Prep Date	Analysis Date
Gamma Ra-226 & Hit	s By EML GA-	01-R MOD	p(i/g	Batch #	2226082	Yld %
Actinium 227	-0.809	U	0.729		1.17	08/13/12	09/04/12
Actinium 228	1.47		0.369		0.147	08/13/12	09/04/12
Bismuth 212	0.545	U	0.604		0.970	08/13/12	09/04/12
Bismuth 214	2.70		0.446		0.203	08/13/12	09/04/12
Lead 210	1.54	U	1.76		2.65	08/13/12	09/04/12
Lead 212	0.883		0.194		0.170	08/13/12	09/04/12
Lead 214	2.37		0.368		0.172	08/13/12	09/04/12
Potassium 40	22.7		3.66		1.26	08/13/12	09/04/12
Protactinium 231	0.457	U	0.508		3.37	08/13/12	09/04/12
Radium (226)	2.70		0.446	1.00	0.203	08/13/12	09/04/12
Radium 228	1.47		0.369		0.147	08/13/12	09/04/12
Thallium 208	0.284		0.109		0.136	08/13/12	09/04/12
Thorium 234	0.814	U	0.628		2.99	08/13/12	09/04/12
Uranium 235	0.353	U	0.331		0.608	08/13/12	09/04/12
Uranium 238	0.814	U	0.628		2.99	08/13/12	09/04/12

NOTE (S)

Data are incomplete without the case narrative.

Client Sample ID: SOUTH 1

Radiochemistry

Lab Sample ID: F2H090435-023

Work Order:

Matrix:

SOLID

MV231

Date Collected:

07/31/12 1604

Date Received:

08/09/12 0940

Parameter	Result	Qual	Total Uncert. (2 g+/-)	RI4	mdc	Prep Date	Analysis Date
Gamma Ra-226 & Hit	ts By EML GA-	01-R MOD	p(Ci/g	Batch #	2226082	Yld %
Actinium 227	0.146	U	0.229		0.583	08/13/12	09/04/12
Actinium 228	0.735		0.285		0.421	08/13/12	09/04/12
Bismuth 212	0.508	U	0.507		0.808	08/13/12	09/04/12
Bismuth 214	6.98		0.855		0.215	08/13/12	09/04/12
Lead 210	5.88		2.94		3.56	08/13/12	09/04/12
Lead 212	0.932		0.202		0.209	08/13/12	09/04/12
Lead 214	6.75		0.827		0.261	08/13/12	09/04/12
Potassium 40	20.1		2.95		0.780	08/13/12	09/04/12
Protactinium 231	0.561	U	0.619		3,62	08/13/12	09/04/12
Radium (226)	6.98		0.855	1.00	0.215	08/13/12	09/04/12
Radium 228	0.735		0.285		0.421	08/13/12	09/04/12
Thallium 208	0.438		0.121		0.102	08/13/12	09/04/12
Thorium 234	0.281	U	2.28		3.90	08/13/12	09/04/12
Uranium 235	0.492	U	0.363		0.793	08/13/12	09/04/12
Uranium 238	0.281	U	2.28		3.90	08/13/12	09/04/12

Data are incomplete without the case narrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC.

Result is less than the sample detection limit.

Client Sample ID: EAST C

Radiochemistry

Lab Sample ID: F2H090435-024

0.198

0.686

Date Collected:

0.423

2.09

08/01/12 1438

Work Order: Matrix:

Uranium 235

Uranium 238

MV232 SOLID Date Received:

08/09/12 0940

Parameter	Result	Qual	Total Uncert. (2 g+/-)	RL	mdc	Prep Date	Analysis Date	
Gamma Ra-226 & Hi	ts By EML GA-	01-R MOD	p	Ci/g	Batch #	2226082	Yld %	
Actinium 227	0.246	U	0.259		0.411	08/13/12	09/04/12	
Actinium 228	1.28		0.238		0.134	08/13/12	09/04/12	
Bismuth 212	0.439	U	0.377		0.585	08/13/12	09/04/12	
Bismuth 214	0.918		0.200		0.146	08/13/12	09/04/12	
Lead 210	3.14		1.64		1.85	08/13/12	09/04/12	
Lead 212	0.957		0.174		0.127	08/13/12	09/04/12	
Lead 214	1.30		0.205		0.130	08/13/12	09/04/12	
Potassium 40	20.4		2.77		0.537	08/13/12	09/04/12	
Protactinium 231	0.562	U	0.612		2.37	08/13/12	09/04/12	
Radium (226)	0.918		0.200	1.00	0.146	08/13/12	09/04/12	
Radium 228	1.28		0.238		0.134	08/13/12	09/04/12	
Thallium 208	0.390		0.0860		0.0525	08/13/12	09/04/12	
Thorium 234	0.686	U	0.600		2.09	08/13/12	09/04/12	
Thorium 234	0.686	U	0.600		2.09	08/13/12	09/04/12	

0.257

0.600

U

NOTE (S)

Data are incomplete without the case narrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC.

Result is less than the sample detection limit. 30 of 47

08/13/12 09/04/12

08/13/12 09/04/12

Client Sample ID: AREA 6 #4R

Radiochemistry

Lab Sample ID: F2H090435-025 Work Order:

Matrix:

MV233

SOLID

Date Collected: Date Received:

08/02/12 1531

08/09/12 0940

			Total Uncert.			Prep	Analysis
Parameter	Result	Qual	(2 σ+/-)	RL	mdc	Date	Date
Gamma Ra-226 & Hit	ts By EML GA-C	1-R MOD	po	Ci/g	Batch #	2226082	Yld %
Actinium 227	-0.0872	ū	1.01		1.69	08/13/12	09/04/12
Actinium 228	1.23		0.285		0.217	08/13/12	09/04/12
Bismuth 212	0.237	U	0.470		0.806	08/13/12	09/04/12
Bismuth 214	1.35		0.276		0.177	08/13/12	09/04/12
Lead 210	1.94	U	1.43		2.22	08/13/12	09/04/12
Lead 212	1.03		0.196		0.138	08/13/12	09/04/12
Lead 214	1.56		0.264		0.163	08/13/12	09/04/12
Potassium 40	17.8		2.82		0.793	08/13/12	09/04/12
Protactinium 231	0.234	U	0.404		2.62	08/13/12	09/04/12
Radium (226)	1.35		0.276	1.00	0.177	08/13/12	09/04/12
Radium 228	1.23		0.285		0.217	08/13/12	09/04/12
Thallium 208	0.280		0.0888		0.0813	08/13/12	09/04/12
Thorium 234	0.380	U	0.628		2.36	08/13/12	09/04/12
Uranium 235	0.0334	υ	0.0763		0.516	08/13/12	09/04/12
Uranium 238	0.380	υ .	0.628		2,36	08/13/12	09/04/12

NOTE (S)

Data are incomplete without the case narrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC.

Result is less than the sample detection limit. 31 of 47

Tetra Tech, EMI (ARRA) Client Sample ID: PIT WEST

Radiochemistry

Lab Sample ID: F2H090435-026

Work Order:

Matrix:

MV234 SOLID Date Collected:

07/30/12 1347

Date Received:

08/09/12 0940

Parameter	Result	Qual	Total Uncert. (2 g+/-)	RL	mdc	Prep Date	Analysis Date
Gamma Ra-226 & Hit	s By EML GA-	01-R MOD	pO	Ci/g	Batch #	2226082	Yld %
Actinium 227	0.0147	ū	0.467	- 10, 17 4	0.794	08/13/12	09/04/12
Actinium 228	0.280		0.135		0.215	08/13/12	09/04/12
Bismuth 212	0.170	U	0.298		0.506	08/13/12	09/04/12
Bismuth 214	0.356		0.127		0.122	08/13/12	09/04/12
Lead 210	1.24	U	1.40		1.93	08/13/12	09/04/12
Lead 212	0.373		0.0997		0.117	08/13/12	09/04/12
Lead 214	0.375		0.106		0.0945	08/13/12	09/04/12
Potassium 40	21.2		2.86		0.787	08/13/12	09/04/12
Protactinium 231	0.127	U	0.216		1.75	08/13/12	09/04/12
Radium (226)	0.356		0.127	1.00	0.122	08/13/12	09/04/12
Radium 228	0.280		0.135		0.215	08/13/12	09/04/12
Thallium 208	0.143		0.0548		0.0610	08/13/12	09/04/12
Thorium 234	0.367	U	0.426		1.71	08/13/12	09/04/12
Uranium 235	0.111	U	0.246		0.348	08/13/12	09/04/12
Uranium 238	0.367	U	0.426		1.71	08/13/12	09/04/12

Data are incomplete without the case narrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC.

Result is less than the sample detection limit.

Client Sample ID: NORTH D

Radiochemistry

Work Order:

Matrix:

Lab Sample ID: F2H090435-027

MV235 SOLID Date Collected:

08/01/12 1425

Date Received:

0	8/	09	/1	2	0	9	4	0
v	01	00	1 7	6	V	1	.4	v

Parameter	Result	Qual	Total Uncert. (2 g+/-)	RL	mdc	Prep Date	Analysis Date
Gamma Ra-226 & Hit	s By EML GA-	01-R MOD	р	Ci/g	Batch #	2226082	Yld %
Actinium 227	0.0132	U	0.688	***	1.16	08/13/12	09/04/12
Actinium 228	0.855		0.212		0.241	08/13/12	09/04/12
Bismuth 212	0.435	U	0.353		0.537	08/13/12	09/04/12
Bismuth 214	0.817		0.169		0.134	08/13/12	09/04/12
Lead 210	7.55		1.94		2.15	08/13/12	09/04/12
Lead 212	0.667		0.142		0.132	08/13/12	09/04/12
Lead 214	0.913		0.199		0.150	08/13/12	09/04/12
Potassium 40	21.8		2.97		0.627	08/13/12	09/04/12
Protactinium 231	0.526	U	0.609		2.10	08/13/12	09/04/12
Radium (226)	0.817		0.169	1.00	0.134	08/13/12	09/04/12
Radium 228	0.855		0.212		0.241	08/13/12	09/04/12
Thallium 208	0.236		0.0818		0.0770	08/13/12	09/04/12
Thorium 234	0.707	U	1.18		2.03	08/13/12	09/04/12
Uranium 235	0.122	U	0.225		0.360	08/13/12	09/04/12
Uranium 238	0.707	U	1.18		2.03	08/13/12	09/04/12

Data are incomplete without the case narrative.

Client Sample ID: NORTH F

Radiochemistry

Work Order:

Matrix:

Lab Sample ID: F2H090435-028

MV236 SOLID Date Collected: Date Received:

08/01/12 1431

08/09/12 0940

Parameter	Result	Qual	Total Uncert. (2 g+/-)	RL	mdc	Prep Date	Analysis Date
Gamma Ra-226 & Hit	ts By EML GA-	01-R MOD	p	Ci/g	Batch #	2226082	Yld %
Actinium 227	0.0365	U	0.169		0.424	08/13/12	09/04/12
Actinium 228	1.12		0.240		0.197	08/13/12	09/04/12
Bismuth 212	1.10		0.458		0.375	08/13/12	09/04/12
Bismuth 214	1.07		0.226		0.166	08/13/12	09/04/12
Lead 210	1.19	U	1.44		2.10	08/13/12	09/04/12
Lead 212	0.872		0.170		0.119	08/13/12	09/04/12
Lead 214	1.29		0.232		0.154	08/13/12	09/04/12
Potassium 40	20.6		2.87		0.996	08/13/12	09/04/12
Protactinium 231	0.336	U	0.432		2.23	08/13/12	09/04/12
Radium (226)	1.07		0.226	1.00	0.166	08/13/12	09/04/12
Radium 228	1.12		0.240		0.197	08/13/12	09/04/12
Thallium 208	0.266		0.0827		0.0755	08/13/12	09/04/12
Thorium 234	0.974	U	1.23		1.84	08/13/12	09/04/12
Uranium 235	0.0505	U	0.271		0.464	08/13/12	09/04/12
Uranium 238	0.974	σ	1.23		1.84	08/13/12	09/04/12

MDC is determined by instrument performance only. Bold results are greater than the MDC.

Result is less than the sample detection limit.

Data are incomplete without the case narrative.

Client Sample ID: PIPE #9

Radiochemistry

Lab Sample ID: F2H090435-029

Work Order:

Matrix:

MV238 SOLID Date Collected:

08/03/12 1638

Date Received: 08/09/12 0940

Parameter	Result	Qual	Total Uncert. (2 g+/-)	RL	mdc	Prep Date	Analysis Date
Gamma Ra-226 & Hit	s By EML GA-	01-R MOD	p(Ci/g	Batch #	2226082	Yld %
Actinium 227	-0.391	Ū	0.444	The same and the	0.724	08/13/12	09/04/12
Actinium 228	0.867		0.246		0.177	08/13/12	09/04/12
Bismuth 212	0.335	U	0.362		0.582	08/13/12	09/04/12
Bismuth 214	2.10		0.326		0.157	08/13/12	09/04/12
Lead 210	6.60		2.02		2.18	08/13/12	09/04/12
Lead 212	0.669		0.139		0.120	08/13/12	09/04/12
Lead 214	1.99		0.299		0.166	08/13/12	09/04/12
Potassium 40	20.4		2.82		0.667	08/13/12	09/04/12
Protactinium 231	-0.724	U	1.33		2.24	08/13/12	09/04/12
Radium (226)	2.10		0.326	1.00	0.157	08/13/12	09/04/12
Radium 228	0.867		0.246		0.177	08/13/12	09/04/12
Thallium 208	0.295		0.0799		0.0658	08/13/12	09/04/12
Thorium 234	0.374	U	1.31		2.25	08/13/12	09/04/12
Uranium 235	0.0860	U	0.219		0.419	08/13/12	09/04/12
Uranium 238	0.374	U	1.31		2.25	08/13/12	09/04/12

Data are incomplete without the case narrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC.

Result is less than the sample detection limit.

METHOD BLANK REPORT

Radiochemistry

Client Lot ID:

F2H090435

Matrix:

SOLID

Parameter	Result	Qual	Total Uncert. (2 o+/-)	RL	MDC		Prep Date	Lab Sample ID Analysis Date
Gamma Ra-226 & Hit	s By EML GA-	-01-R MOD	pCi/g	Batch #	2226077	Yld %	F2	2H130000-077E
Actinium 227	0.0630	U	0.138		0.370		08/13/12	09/03/12
Actinium 228	0.0744	U	0.0780		0.255		08/13/12	09/03/12
Bismuth 212	0.0	U	0.0880		0.475		08/13/12	09/03/12
Bismuth 214	-0.0227	U	0.114		0.179		08/13/12	09/03/12
Lead 210	0.307	U	0.871		1.62		08/13/12	09/03/12
Lead 212	-0.0173	U	0.125		0.116		08/13/12	09/03/12
Lead 214	-0.00585	U	0.0913		0.157		08/13/12	09/03/12
Potassium 40	-0.00509	U	0.543		1.19		08/13/12	09/03/12
Protactinium 231	0.206	U	0.531		1.51		08/13/12	09/03/12
Radium (226)	-0.0227	U	0.114	1.00	0.179		08/13/12	09/03/12
Radium 228	0.0744	U	0.0780		0.255		08/13/12	09/03/12
Thallium 208	-0.000524	U	0.0418		0.0858		08/13/12	09/03/12
Thorium 234	0.258	U	0.229		1.38		08/13/12	09/03/12
Uranium 235	0.0856	U	0.159		0.269		08/13/12	09/03/12
Uranium 238	0.258	U	0.229		1.38		08/13/12	09/03/12
					No. World			
Gamma Ra-226 & Hit	s By EML GA-	-01-R MOD	pCi/g	Batch #	2226082	Yld %	F	2H130000-082E
Actinium 227	0.0120	U	0.0327		0.602		08/13/12	09/04/12
Actinium 228	0.0417	Ū	0.0920		0.253		08/13/12	09/04/12
Bismuth 212	0.0	U	0.139		1.07		08/13/12	09/04/12
	-0.0490	U	1.96		121 22 22 27		08/13/12	09/04/12
Bismuth 214	-0.0430	U	1.90		0.326			
	0.895	ū	1.37		2,66		08/13/12	09/04/12
Bismuth 214 Lead 210 Lead 212		43						09/04/12 09/04/12
Lead 210	0.895	U	1.37		2,66		08/13/12	
Lead 210 Lead 212	0.895 -0.0438	n n	1.37 0.349		2.66		08/13/12 08/13/12	09/04/12
Lead 210 Lead 212 Lead 214	0.895 -0.0438 0.0636	n n	1.37 0.349 0.106		2,66 0,173 0,183		08/13/12 08/13/12 08/13/12	09/04/12 09/04/12
Lead 210 Lead 212 Lead 214 Potassium 40	0.895 -0.0438 0.0636 -0.491	υ υ υ	1.37 0.349 0.106 19.6	1.00	2.66 0.173 0.183 1.60		08/13/12 08/13/12 08/13/12 08/13/12	09/04/12 09/04/12 09/04/12
Lead 210 Lead 212 Lead 214 Potassium 40 Protactinium 231	0.895 -0.0438 0.0636 -0.491 0.355	U U U U	1.37 0.349 0.106 19.6 0.926	1.00	2.66 0.173 0.183 1.60 2.44		08/13/12 08/13/12 08/13/12 08/13/12 08/13/12	09/04/12 09/04/12 09/04/12 09/04/12
Lead 210 Lead 212 Lead 214 Potassium 40 Protactinium 231 Radium (226)	0.895 -0.0438 0.0636 -0.491 0.355 -0.0490	U U U U	1.37 0.349 0.106 19.6 0.926 1.96	1.00	2,66 0,173 0,183 1,60 2,44 0,326		08/13/12 08/13/12 08/13/12 08/13/12 08/13/12	09/04/12 09/04/12 09/04/12 09/04/12
Lead 210 Lead 212 Lead 214 Potassium 40 Protactinium 231 Radium (226) Radium 228	0.895 -0.0438 0.0636 -0.491 0.355 -0.0490 0.0417	U U U U U	1.37 0.349 0.106 19.6 0.926 1.96 0.0920	1.00	2,66 0,173 0,183 1,60 2,44 0,326 0,253		08/13/12 08/13/12 08/13/12 08/13/12 08/13/12 08/13/12	09/04/12 09/04/12 09/04/12 09/04/12 09/04/12
Lead 210 Lead 212 Lead 214 Potassium 40 Protactinium 231 Radium (226) Radium 228 Thallium 208	0.895 -0.0438 0.0636 -0.491 0.355 -0.0490 0.0417 0.00874	U U U U U U U	1.37 0.349 0.106 19.6 0.926 1.96 0.0920 0.0492	1.00	2.66 0.173 0.183 1.60 2.44 0.326 0.253 0.115		08/13/12 08/13/12 08/13/12 08/13/12 08/13/12 08/13/12 08/13/12	09/04/12 09/04/12 09/04/12 09/04/12 09/04/12 09/04/12

NOTE (S)

Data are incomplete without the case narrative.

Laboratory Control Sample Report

Radiochemistry

Client Lot ID:

F2H090435

Matrix:

SOLID

			Total		Lab Sa	mple ID
Parameter	Spike Amount	Result	Uncert. (2 g+/-)	MDC	% Yld % Rec	QC Control Limits
Gamma Ra-226 & Hit	s By EML GA-01	-R MOD	pCi/g	GA-01-R MOD	F2H130	0000-077C
Radium (226)	12.2	10.1	1.52	0.673	83.0	(73.0 - 107)
Thorium 232	9.50	9.32	1.45	0.347	98.2	(82.0 - 126)
	Batch #:	2226077		Analysis Date:	09/03/12	
Gamma Ra-226 & Hit	s By EML GA-01	-R MOD	pCi/g	GA-01-R MOD	F2H130	0000-082C
Radium (226)	12.2	11.4	1.51	0.503	93.5	(73.0 - 107)
Thorium 232	9.50	9.62	1.36	0.742	101	(82.0 - 126)
	Batch #:	2226082		Analysis Date:	09/04/12	

DUPLICATE EVALUATION REPORT

Radiochemistry

Client Lot ID:

F2H090435

Date Sampled:

08/01/12

Matrix:

SOLID

Date Received: 08/09/12

			Total Uncert.				Total Uncert.		QC Sample ID	
Parameter	Result		(2g+/-)	% Yld	DUPLICAT Result	E	(2 σ+/-)	% Yld	Precisio	on
Gamma Ra-226 & Hi	ts By EML	GA-01-	R MOD	pCi/g	GA-0	1-R 1	MOD	F	2Н090435-00	1
Actinium 227	0.0274	U	0.0897		-0,0185	U	0.566		1030	%RPI
Actinium 228	0.778		0.173		0.906		0.194		15.2	%RPI
Bismuth 212	0.469	U	0.336		0.454	U	0.441		3.38	%RPI
Bismuth 214	0.801		0.178		0.779		0.196		2.81	%RPI
Lead 210	0.248	U	1.14		0.578	U	1.33		80.1	%RPI
Lead 212	0.751		0.156		0.687		0.161		8.88	%RPD
Lead 214	0.868		0.193		0.858		0.165		1.10	%RPD
Potassium 40	17.9		2.55		20.8		3.07		15.2	%RPI
Protactinium 231	0.553	U	0.428		0.361	U	0.337		42.0	%RPI
Radium (226)	0.801		0.178		0.779		0.196		2.81	%RPI
Radium 228	0.778		0.173		0.906		0.194		15.2	%RPI
Thallium 208	0.232		0.0672		0.252		0.0797		8.47	%RPI
Thorium 234	1.21	U	1.14		0.349	U	0.696		110	%RPI
Uranium 235	0.0598	U	0.165		0.249	U	0.252		122	%RPI
Uranium 238	1.21	U	1.14		0.349	U	0.696		110	%RPI
	Ba	tch #:	2226077	(Sample)	22260	77 (1	Duplicate)			
Gamma Ra-226 & Hi	ts By EML	GA-01-	R MOD	pCi/g	GA-0	1-R 1	MOD	F	2н090435-01	7
Actinium 227	-0.770	U	0.626		0.0453	U	0.127		225	%RPI
Actinium 228	1.48		0.322		1.35		0.292		9.39	%RPI
Bismuth 212	1.17		0.642		0.620	U	0.496		61.1	%RPI
Bismuth 214	2.84		0.427		2.98		0.443		4.83	%RPI
Lead 210	2.32	U	2.06		1.35	U	1.99		53.2	%RPI
Lead 212	1.35		0.235		1.41		0.254		4.59	%RPI
Lead 214	3.37		0.446		3.30		0.451		2.18	%RPI
Potassium 40	20.8		3.17		20.6		3.16		1.19	%RPI
Protactinium 231	1.76	U	1.14		1.52	U	1.01		14.8	%RP1
Radium (226)	2.84		0.427		2.98		0.443		4.83	%RPI
Radium 228	1.48		0.322		1.35		0.292		9.39	%RP
Thallium 208	0.549		0.122		0.497		0.118		9,92	%RPI
Thorium 234	0.772	U	0.856		0.839	U	0.708		8.25	%RPI
Uranium 235	0.0137	U	0.267		0.338	U	0.304		184	%RPI
Uranium 238	0.772	U	0.856		0.839	U	0.708		8.25	%RP
	Ва	toh #:	2226082	(Sample)	22260	82 (1	Duplicate)			

Data are incomplete without the case narrative.

Calculations are performed before rounding to avoid round-off error in calculated results

CLIENT ANALYSIS SUMMARY

SDG:

Storage Loc:

RAD

Date Received:

2012-08-09

Analytical Due Date:

2012-09-07

2012-09-08

Report Due Date:

Quote #: 90680

Project: PO#

10862424

RADIATION - STANDARD PRECISI Report to: EMILY FISHER

Client:

Project Manager: EKS

3333030

Tetra Tech, EMI (ARRA)

#SMPS In LOT: 29

Report Type: B

EDD Code: 00

Standard	Report
----------	--------

SAMP	LE#	CLIE	NT SAMPL	EID	Site II	2	Client Matrix	DATE/T	ME SAMPLED	WORKORD	ER	Α
		EAST	A				2	012-08-0	01/1434	MV226	S	OLID
SAMP	LE CO	MME	NTS:									
XX	ZV		RAD SCREEN	SOLID, RAD SCREEN		RA	IN-HOUSE RAD SCREEN	01	STANDARD TEST SET	PROT: A	WRK	06
XX	0B	EML	GA-01-R MOD	SOLID, GA-01-R MOD, G Re-226 & Hits	lamma	Jo	Dry, Grind, and Fill Geometry -> 2 day in-growth	1 01	STANDARD TEST SET	PROT: R	LOG WRK LOG	06
SAMP	LE#	CLIE	NT SAMPL	EID	Site II	2	Client Matrix	DATE/T	ME SAMPLED	WORKORI	DER	Α
2		EAST	D				2	012-08-0	01 / 1440	MV228	S	OLID
SAMP	LE CO	DMME	2012									
XX	ZV		SOREEN	SOLID, RAD SCREEN		RA	IN-HOUSE RAD SCREEN	01	STANDARD TEST SET	PROT: A	WRK	06
XX	0B	EML	GA-01-R MOD	SOLID, GA-01-R MOD, G Re-226 & Hits	lemma	J9	Dry, Grind, and Fill Geometry -> 2 day in-growth	1 01	STANDARD TEST SET	PROT: R	WRK LOC	06
SAMP	LE#	CLIE	NT SAMPL	EID	Site II	2	Client Matrix	DATE/T	ME SAMPLED	WORKORI	DER	Α
3		PIPE	#4				2	012-08-	03 / 1424	MV229	S	OLID
SAMP	LE C	OMME	NTS:									
XX	ZV		RAD SCREEN	SOLID, RAD SCREEN		RA	IN-HOUSE RAD SCREEN	01	STANDARD TEST SET	PROT: A	WRK	06
XX	0B	EML	GA-01-R MOD	SOLID, GA-01-R MOD, G Ra-226 & Hits	amma	J9	Dry, Grind, and Fill Geomatry -> 2 day in-growth	1 01	STANDARD TEST SET	PROT: R	WRK	06
SAMP	LE#	CLIE	NT SAMPL	EID	Site II	2	Client Matrix	DATE/T	ME SAMPLED	WORKOR	DER	Α
4		EAST	В				.2	012-08-	01 / 1436	MV23A	S	OLID
SAMP	LEC	OMME	NTS;									
XX	zv	-Hugora	RAD	SOLID, RAD SCREEN		RA	IN-HOUSE RAD SCREEN	01	STANDARD TEST SET	PROT: A	WRK	06
XX	0B	EML	GA-01-R MOD	SOLID, GA-01-R MOD, G Ra-226 & Hits	emma	J9	Dry, Grind, and Fill Geometry -> 2 day in-growth	01	STANDARD TEST SET	PROT: R	WRK LOC	06
SAMP	LE#	CLIE	NT SAMP	EID	Site II	2	Cilent Matrix	DATE/T	ME SAMPLED	WORKORI	DER	Δ
5		AREA	6 #2				2	012-08-	02/958	MV23C	S	OLID
SAMP	LE C											
XX	zv		RAD	SOLID, RAD		RA	IN-HOUSE RAD	01	STANDARD TEST SET	PROT: A	WRK.	06
XX	0B	EML	SOREEN GA-01-R MOD	SCREEN SOLID, GA-01-R MOD, G Re-226 & Hils	Jemma	J9	SCREEN Dry, Grind, and Fill Geometry -> 2 day in-growth	1 01	STANDARD TEST SET	PROT: R	WRK LOC	06
SAMP	LE#	CLIE	NT SAMPI	LE ID	Site II	0	Client Matrix	DATE/T	IME SAMPLED	WORKOR	DER	Α
6		AREA	3#4				-2	2012-08-	03/1149	MV23E	S	OLID
SAMP	LEC	OMME	NTS:									
XX	ZV		RAD	SOLID, RAD SCREEN		RA	IN-HOUSE RAD SCREEN	01	STANDARD TEST SET	PROT: A	WRK	06
XX	0B	EML	GA-01-R MOD	SOLID, GA-01-R MOD, (Re-226 & Hits	Samma	10	Dry, Grind, and Fill Geometry -> 2 day in-growth	21 01	STANDARD TEST SET	PROT: R	WRK	06
SAMP	LE#	CLIE	NT SAMP	LEID	Site I	D	Client Matrix	DATE/T	IME SAMPLED	WORKOR	DER	Δ
7		AREA	3 #6				2	2012-08-	03/1152	MV23F	S	OLID
SAME	LEC									37-78-57		
	zv		RAD	SOLID, RAD		RA	IN-HOUSE RAD	01	STANDARD TEST SET	PROT: A	WRK	06
	0B	EML	SCREEN GA-01-R	SOREEN SOLID, GA-01-R MOD, (Samma	J9	SCREEN Dry, Grind, and Fill Geometry -> 2 day in-growth	21 01	STANDARD TEST SET	PROT: R	LOC WRK	06

CLIENT ANALYSIS SUMMARY

Storage Loc:

RAD

Project Manager: EKS

Quote #: 90680

SDG:

Date Received:

2012-08-09

Project:

RADIATION - STANDARD PRECISI

Analytical Due Date: Report Due Date: 2012-09-07 2012-09-08

PO#:

1086243

DANIELSB

2012-08-09

12:59:57

Logged in by:

Report to: EMILY FISHER

Report Type: B

Standard Report

Client:

3333030

Tetra Tech, EMI (ARRA)

#SMPS in LOT: 29

EDD Code; 00

SAMP	LE#		NT SAMP	LE (D	Site ID	2			IME SAMPLED	WORKORDER	Δ	
B	150	SOUT	200 - 200				2	2012-07-	31 / 1602	MV23G	OLID	
SAMP	Core	DIVINE	RAD .	SOLID, RAD		RA	IN-HOUSE RAD	01	STANDARD TEST SET	PROT: A WRK	06	
****		Ess.	SCREEN	SCREEN		133	SCREEN			LOC		
XX	0B	EML	GA-01-R MOD	SOLID, GA-01-R MOD, GA Ra-226 & Hills	imma	19	Dry, Grind, and Fill Geometry -> 2 dey in-growth	01	SYANDARD TEST SET	PROT: R WRK	06	
SAMP	LE#	CLIE	NT SAMP	LE ID	Site ID	2	Client Matrix	DATE/T	IME SAMPLED	WORKORDER	Α	
9		PIT-S	OUTH				2	2012-07-	30/ 1500	MV23H S	OLID	
SAMP	LEC	OMME	NTS:									
XX	ZV		RAD SCREEN	SOLID, RAD SCREEN		RA	IN-HOUSE RAD SCREEN	01	STANDARD TEST SET	PROT: A WRK	06	
XX	0B	EML	GA-01-R MOD	SOLID, GA-01-R MOD, GE Ra-226 & Hits	amma	J9	Dry, Orlnd, and Fill Geometry -> 2 day in-growth	21 01	STANDARD TEST SET	PROT: R WRK	06	
SAMP	LE#	CLIE	NT SAMP	LEID	Site ID	2	Client Matrix	DATE/T	IME SAMPLED	WORKORDER	Α	
10		PIPE	#5				2	2012-08-	03 / 1526	MV23J	SOLID	
SAMP	LEC							es truelly	694 (F. 17.276.7)	10100176		
XX	Direct . In		RAD	SOLID, RAD		RA	IN-HOUSE RAD	01	STANDARD TEST SET	PROT: A WRK	06	,
xx	0В	EML	SGREEN GA-01-R MOD	SCREEN SOLID, GA-01-R MOD, G Ra-226 & Hits	amma	J9	SCREEN Dry, Grind, and Fill Geometry -> 2 day in-growth	21 01	STANDARD TEST SET	PROT: R WRK	06	
SAMP	LE#	CLIE	NT SAMP	LE ID	Site ID	2	Client Matrix	DATE/T	IME SAMPLED	WORKORDER	Α	
11		ARE/	6 #6				2	2012-08-	02/1006	MV23K	SOLID	
SAMP	LEC	OMME	NTS:									
XX	ZV		RAD	SOLID, RAD		RA	IN-HOUSE RAD SCREEN	01	STANDARD TEST SET	PROT: A WRK	06	
XX	0B	EML	SCREEN GA-01-R MOD	SCREEN SOLID, GA-01-R MOD, G Re-226 & Hits	amma	19	Dry, Grind, and Fill Geometry -> 2 day in-growth	21 01	STANDARD TEST SET	PROT: R WRK	06	
SAMP	LE#	CLIE	NT SAMP	LEID	Site II	2	Client Matrix	DATE/I	IME SAMPLED	WORKORDER	Α	
12		AREA	6 #7R				2	2012-08-	02/1400	MV23L	SOLID	
SAMP	LEC	OMME	NTS:									
XX	ZV		RAD	SOLID, RAD		RA	IN-HOUSE RAD SCREEN	01	STANDARD TEST SET	PROT: A WRE	06	
XX	0В	EML	SCREEN GA-01-R MOD	SCREEN SOLID, GA-01-R MOD, G Ra-226 & Hils	amma	19	Dry, Grind, and Fill Geometry -> 2 day In-growth	21 01	STANDARD YEST SET	PROT:R WRITE	06	
SAMP	LE#	CLIE	NT SAMP	LE ID	Site ID	2	Client Matrix	DATE/	IME SAMPLED	WORKORDER	Δ	
13		PIT-N	ORTH				7	2012-07-	-30 / 1342	MV23M	SOLID	
SAMP	LEC	OMME										
XX	ZV		RAD SCREEN	SOLID, RAD SCREEN		RA	IN-HOUSE RAD SOREEN	01	STANDARD TEST SET	PROT; A WRI	06	
XX	0B	EML	GA-01-R MOD	SOLID, GA-01-R MOD, G Ra-228 & Hits	emme	19	Dry, Grind, and Fill Geometry -> 2 day in-growth	21 01	STANDARD TEST SET	PROT: R WRI	06	
SAME	LE#	CLIE	NT SAMP	LEID	Site II	2	Client Matrix	DATE/	IME SAMPLED	WORKORDER	Α	
14		AREA	6#4					2012-08	-02 / 1002	MV23N	SOLID	
SAME	LEC	OMME	NTS:									
XX	ZV		RAD	SOLID, RAD		RA	IN-HOUSE RAD SCREEN	01	STANDARD TEST SET	PROT: A WRI	06	
XX	0В	EML.	SCREEN GA-01-R MOD	SCREEN SOLID, GA-01-R MOD, G Ra-226 & Hils	amina	J9	Dry, Grind, and Fill Geometry -> : day in-growth	21 01	STANDARD TEST SET	PROT; R WRI	06	
SAMP	LE#	CLIE	NT SAMP	LEID	Site it	2	Client Matrix	DATE/	TIME SAMPLED	WORKORDER	Α	

TestAmerica - St. Louis

Page 2 of 6

printed on: Thursday, August 09, 2012 03:04 P

CLIENT ANALYSIS SUMMARY

Storage Loc:

RAD

Standard Report

Project Manager: EKS

Quote #: 90680

SDG:

Date Received: Analytical Due Date: 2012-08-09 2012-09-07

Project: PO#:

1086243

Report to: EMILY FISHER

RADIATION - STANDARD PRECISI

Report Due Date: Report Type: B

2012-09-08

Client:

3333030

Tetra Tech, EMI (ARRA)

#SMPS in LOT: 29

EDD Code: 00

15		PIPE					20	12-08-0	03/1422	MV23P	SC	OLID
		MME	RAD	SOLID, RAD		DA	IN-HOUSE RAD	0.4	STANDARD TEST SET	PROT: A	Wate	00
XX	ZV		SCREEN	SCREEN		RA	SCREEN	01			WRK	06
XX	0В	EML	GA-01-R MOD	SOLID, GA-01-R MOD, G Ra-226 & Hits	amma	J9	Dry, Grind, and Fill Geometry -> 21 day in-growth	01	STANDARD TEST SET	PROT: R	WRK LOC	06
AMP	LE#	OLIE	NT SAMPL	E ID	Site ID	<u>)</u>	Client Matrix D.	ATE/T	ME SAMPLED	WORKORD	ER	Α
18		AREA	6 #5				20	12-08-0	02/ 1004	MV23Q	80	OLID
SAMP	LECC	MME	VTS:									3070780,0
XX	ZV		RAD	SOLID, RAD		RA	IN-HOUSE RAD	01	STANDARD TEST SET	PROT: A	WRK	06
XX	0B	EML	SCREEN GA-01-R MOD	SCREEN SOLID, GA-01-R MOD, G Re-226 & Hils	amma	J9	SOREEN Dry, Grind, and FIR Geometry -> 21 day in-growth	01	STANDARD TEST SET	PROT: R	WRK LOC	08
BAMP	LE#	CLIE	NT SAMPL	EID	Site ID)	Client Matrix D	ATE/T	ME SAMPLED	WORKORE	ER	Α
17		AREA	6#1R				20	12-08-	02/ 1610	MV23R	S	OLID
Same a		OMME	12.50							2011201		
XX	zv	11.77	RAD	SOLID, RAD		RA	IN-HOUSE RAD	01	STANDARD TEST SET	PROT: A	WRK	06
XX	ов	EML	SCREEN GA-D1-R	SCREEN SOLID, GA-01-R MOD, G	amma	J9	SCREEN Dry, Grind, and Fill Geometry -> 21	01	STANDARD TEST SET	PROT: R	LOC WRK	06
^^	0.5	marketti.	MOD	Ra-226 & Hits		-	day in-growth	V1	Secretary of the Secretary	.,,,,,,,,,,	LOC	VV.
SAMP	LE#	CLIE	NT SAMPL	EID	Site ID	2	Client Matrix D	ATE/T	ME SAMPLED	WORKORE	ER	Α
18		PIT-E	AST				20	12-07-	30 / 1350	MV23T	S	OLID
SAMP	LE CO	DMME	NTS:									
XX	ZV		RAD SCREEN	SOLID, RAD SCREEN		RA	IN-HOUSE RAD SCREEN	01	STANDARD TEST SET	PROT: A	WRK	08
XX	0B	EML	GA-01-R MOD	SOLID, GA-01-R MOD, G Ra-228 & Hils	amma	J9	Dry, Grind, and FIII Geometry > 21 day in-growth	01	STANDARD TEST SET	PROT: R	WRK	06
SAMP	LE#	CLIE	NT SAMPI	EID	Site ID	2	Client Matrix D	ATE/T	IME SAMPLED	WORKORE	DER	Α
19		NORT	HE				20	12-08-	01/ 1428	MV23V	S	OLID
SAMP	LE CO	MME	NTS:									
XX	zv		RAD	SOLID, RAD		RA	IN-HOUSE RAD	01	STANDARD TEST SET	PROT: A	WRK	06
XX	0B	EML	SCREEN GA-01-R	SCREEN SOLID, GA-01-R MOD, G	amma	Jo	SCREEN Dry, Grind, and Fill Geometry -> 21	01	STANDARD TEST SET	PROT: R	LOC	06
AA	410		MOD	Ra-226 & Hits			day In-growth			10.000	LOC	
SAMP	LE#	CLIE	NT SAMP	EID	Site ID	2	Client Matrix D	ATE/T	IME SAMPLED	WORKORI	DER	Δ
20		AREA	3 #2				20	12-08-	03/1144	MV23W	S	OLID
SAMP	LE CO	OMME	NTS:									
XX	ZV		RAD SCREEN	SOLID, RAD SCREEN		RA	IN-HOUSE RAD SCREEN	01	STANDARD TEST SET	PROT: A	WRK	06
XX	0B	EML	GA-01-R MOD	SOLID, OA-01-R MOD, G Ra-226 & Hills	amma	J9	Dry, Grind, and Fill Geometry -> 21 day in-growth	01	STANDARD TEST SET	PROT: R	WRK	06
SAMP	LE#	CLIE	NT SAMPI	EID	Site ID	2	Client Matrix D	ATE/T	IME SAMPLED	WORKORI	DER	Α
21		PIPE	#3				20	12-08-	03/1423	MV23X	S	OLID
4.00 Page		OMME										
	ZV		RAD	SOLID, RAD		RA	IN-HOUSE RAD	01	STANDARD TEST SET	PROT; A	WRK	06
	0B	EML	GA-D1-R MOD	SCREEN SOLID, GA-01-R MOD. G Re-228 & His	amma	J9	SCREEN Dry, Grind, and Fill Geometry > 21 day in-growth	01	STANDARD TEST SET	PROT: R	WRK LOC	06
			-6075 FE			_					-	-

CLIENT ANALYSIS SUMMARY

Storage Loc:

RAD

Standard Report

2012-08-09

2012-09-07

2012-09-08

Project Manager: EKS

Quote #: 90680

SDG:

Date Received:

Report Due Date:

Project:

RADIATION - STANDARD PRECISI

Analytical Due Date:

PO#: Client: 1086243

Report to: EMILY FISHER

Report Type: B

3333030 Tetra Tech, EMI (ARRA)

#SMPS In LOT: 29

EDD Code: 00

22	AREA 3 #3			20	12-08-0	03 / 1147	MV230	SOLID	
SAMPLE C	OMMENTS:								
XX ZV	RAD SCREEN	SOLID, RAD SCREEN	RA	IN-HOUSE RAD SCREEN	01	STANDARD TEST SET	PROT: A WR		
XX 0B	EML GA-01-R MOD	SOLID, GA-01-R MOD, Gamma Ra-228 & Hills	J9	Dry, Grind, and Fill Geometry -> 21 day in-growth	01	STANDARD TEST SET	PROT: R WR	06	
SAMPLE#	CLIENT SAMPI	LE ID Site I	D	Client Matrix D	ATE/T	ME SAMPLED	WORKORDER	Α	
23	SOUTH 1			20	12-07-	31 / 1604	MV231	SOLID	
SAMPLE C	OMMENTS:								
XX ZV	RAD SCREEN	SOLID, RAD SCREEN	RA	IN-HOUSE RAD SCREEN	01	STANDARD TEST SET	PROT: A WR		
XX 0B	EML GA-01-R MOD	SOLID, GA-01-R MOD, Gemma Ra-226 & Hits	19	Dry, Grind, and Fill Geometry -> 21 day in-growth	01	STANDARD TEST SET	PROT: R WR	06	
SAMPLE#	CLIENT SAMPI	LE ID Site	D	Client Matrix D	ATE/T	ME SAMPLED	WORKORDER	Α	
24	EAST C			20	12-08-	01/ 1438	MV232	SOLID	
SAMPLE C	OMMENTS:								
XX ZV	RAD SCREEN	SOLID, RAD SCREEN	RA	IN-HOUSE RAD SCREEN	01	STANDARD TEST SET	PROT: A WR		
XX 0B	EML GA-01-R MOD	SOLID, GA-01-R MOD, Gemma Ra-226 & Hits	J9	Dry, Grind, and Fill Geometry -> 21 day in-growth	01	STANDARD TEST SET	PROT: R WR	06	
SAMPLE#	CLIENT SAMPI	LE ID Site	D	Client Matrix D	ATE/T	IME SAMPLED	WORKORDER	Α	
25	AREA 6#4R			20	12-08-	02 / 1531	MV233	SOLID	
SAMPLE C	OMMENTS:						Mr. et al. 1	- 1 -11/2	
XX ZV	RAD	SOLID, RAD	RA	IN-HOUSE RAD	01	STANDARD TEST SET	PROT: A WR		T
XX 0B	SCREEN GA-01-R MOD	SOREEN SOLID, GA-01-R MOD, Gamma Ra-226 & Hils	J9	SCREEN Dry, Grind, and Fill Geometry -> 21 dey in-growth	01	STANDARD TEST SET	PROT: R WR	6 06	
SAMPLE#	CLIENT SAMPI	LE ID Site	D	Client Matrix D	ATE/T	IME SAMPLED	WORKORDER	Δ	
26	PIT WEST			20	12-07-	30 / 1347	MV234	SOLID	
SAMPLE O	OMMENTS:								
XX ZV	RAD	SOLID, RAD	RA	IN-HOUSE RAD	01	STANDARD TEST SET	PROT: A WR		
XX 0B	SCREEN GA-01-R MOD	SCREEN SOLID, GA-01-R MOD, Gamma Ra-226 & Hils	J9	SCREEN Dry, Grind, and Fill Geometry >> 21 day in-growth	01	STANDARD TEST SET	PROT: R WR	K 06	
SAMPLE#	CLIENT SAMP	LEID Site	D	Client Matrix D	DATE/T	IME SAMPLED	WORKORDER	Α	
27	NORTH D			20	12-08-	01/ 1425	MV235	SOLID	
SAMPLE C	OMMENTS:								
XX ZV	RAD	SOLID, RAD	RA	IN-HOUSE RAD SCREEN	01	STANDARD TEST SET	PROT: A WE		
XX 0B	EML GA-01-R MOD	SCREEN SOLID, GA-01-R MOD, Gamma Ra-228 & Hits	J9	Dry, Grind, and Fill Geometry -> 21 day in-growth	01	STANDARD TEST SET	PROT: R WE	K 06	
SAMPLE #	CLIENT SAMP	LEID Site	ID	Client Matrix D	DATE/T	IME SAMPLED	WORKORDE	A S	
28	NORTH F			20	012-08-	01 / 1431	MV236	SOLID	
SAMPLE C	OMMENTS:								
XX ZV	RAD	SOLID, RAD	RA	IN-HOUSE RAD	01	STANDARD TEST SET	PROT: A WE		
XX 0B	SCREEN GA-01-R MOD	SCREEN SOLID, GA-01-R MOD, Gamma Ra-226 & Hils	J9	SCREEN Dry, Grind, and Fill Geometry -> 21 day in-growth	01	STANDARD TEST SET	PROT; R WF	K 06	
SAMPLE#	CLIENT SAMP	LEID Site	D	Client Matrix D	DATE/T	IME SAMPLED	WORKORDE	A A	

CLIENT ANALYSIS SUMMARY

Storage Loc:

RAD

Project Manager: EKS

Quote #: 90680

SDG:

Date Received:

2012-08-09 2012-09-07

Project:

RADIATION - STANDARD PRECISI

Analytical Due Date: Report Due Date:

2012-09-08

PO#:

1086243

Report to: EMILY FISHER

Report Type: B

Standard Report

Client:

3333030

Tetra Tech, EMI (ARRA)

#SMPS In LOT: 29

EDD Code: 00

29

PIPE #9

2012-08-03 / 1638

MV238

SOLID

SAMPLE COMMENTS:

XX ZV

SOLID, RAD RAD SCREEN

RA IN-HOUSE RAD SCREEN

01 STANDARD TEST SET

PROT: A

WRK 06

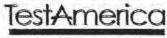
XX 0B EML GA-01-R MOD

SCREEN SOLID, GA-01-R MOD, Gamma Ra-226 & Hils

Dry, Grind, and Fill Geometry -> 21 day In-growth

01 STANDARD TEST SET

PROT: R


WRK 06 LOC

TestAmerica St. Louis

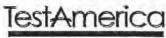
Shone 314.298.8566 fax 314.298.8757

13715 Rider Trail North 44 9Earth City, MO 63045 CUP#188

Chain of Custody Record

THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica Laboratories, Inc.


Client Contact	Project Manager: Rob Mon	nig	Site Contact:	Date:	COC No;
Tetra Tech	Tel/Fax: 816-729-5621		Lab Contact:	Carrier:	of? COCs
415 Oak Street	Analysis Turnaro	and Time			Job No.
Kansas City, MO	Calendar (C) or Work Day	s (W)			
(816) 412-1775 Phone	TAT if different from Belo	rw w	8 6		
(xxx) xxx-xxxx FAX	2 weeks		SCAN		SDG No.
Project Name: Standard trecision Site:	1 week		A 50		
	2 days		1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		0 1 1 5 1 60
PO# 10 96244	1 day		TO SO STANDED		Sampler Kalant Marant
Sample Identification	Sample Sample Sam Date Time Ty	0.96	CAPUNA SO CAPUNA SO CATA ASA IN GESTALA		Sample Specific Notes:
East A	81,112 1434	i	Tx III		
East 0	811/12 1440		X		
Pipe #4	813/12/1424	1	X		
East B	8/1/12 1436		X		
Area 6 #2	8/2/12 0958		X		
HR E REAL	813/12 1149	i	x		
Area 3 #5	3/3/12 11 52	1	x		
South 2	7/31/12 11002		×		
Pit-South	130 /1500	i	X		
Pipe 35	813/12 1526	1	X		
Area 6 \$ 6	3/2/12 /00(2	1	X		
Area 6 #7R	8/2/12 1400				
Preservation Used: 1=Ice, 2=HCl; 3=H2SO4; 4=HNO3;	5=NaOH; 6= Other				
Possible Hazard Identification Non-Hazard Flammable Skin Irritan	Poison B Unkno	wn 🗀	Sample Disposal (A fee		are retained longer than 1 month) Archive For Months est merica St.
Special Instructions/QC Requirements & Comments:					Amer
E 2H					ica C
			-	-	
Belinquished by	Company: /12	Date/Time:	Received by:	Company:	Date/Time:
Relinquished by:	Company:	Date/Time:	Received by:	Company:	nica 8/9/12 1551 093
	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		Received by: House Charles	lon Test Ame	rica 8/9/12 155 I 093
Relinguished by:	Соправу:	Date/Time:	Received by:	Company:	Date/Time:
			1	1	

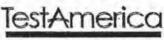
TestAmerica St. Louis

13715 Rider Trail North 45 OEarth City, MO 63045

CUR#188

Chain of Custody Record

THE LEADER IN ENVIRONMENTAL TESTING

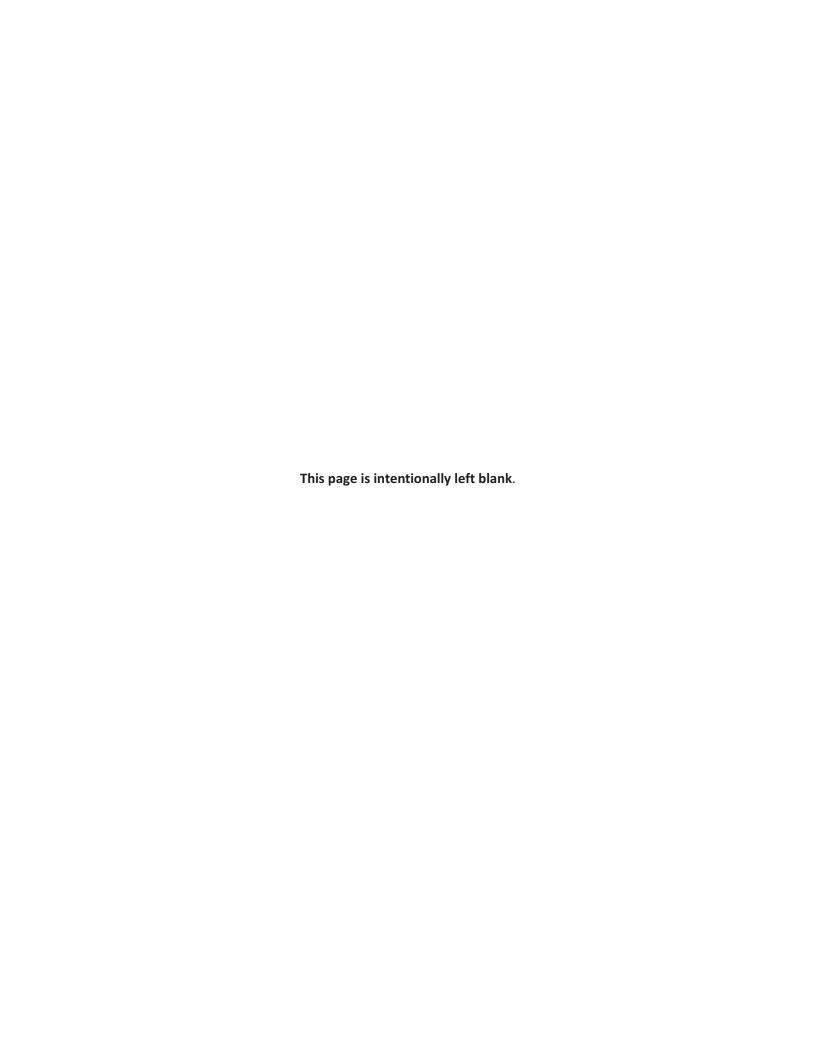

Phone 314.298.8566 fax 314.298.8757									1		TestAmeri	ca Laboratories, Inc.
Client Contact		anager: Re				Site	Contact:			COC No:		
Tetra Tech							Contact:	Carrie	r:		_â of	
415 Oak Street			Curnaround				5				Job No.	
Kansas City, MO	Calendar (C) or Work Days (W) TAT if different from Below						Stand in framed	HIK		111		
(816) 412-1775 Phone							DO GE	1 1 1			000.0	
(xxx) xxx-xxxx FAX Project Name: Standard Project O			2 weeks				3 2 3 1 1		4		SDG No.	
Project Name: Standard McCician Site:			1 week 2 days			100				111	1000	
PO# 1076244			1 day			ple 4	PARTIE CONTRACTOR	1 1 1	3 II II II	1 1 1	Sampler II	Demala take
Sample Identification	Sample Date	Sample Time	Sample Type	Matrix	#of Cont.	Filtered Sam	W. ZI-UN Fac RA				Sample Spe	J
Pit - North	7/3diz	1342			i	D						
Area 6 ±4	3/8/12	1003			1	X	2	bel = F				
Pipe # 2	1/3/12	1422			1	1	2					A
Area 6 #5	Slanz	1004			* Taranta	X	2					
Area 6 #IR	8/2/12	1010			1	X						
P.4- EAST	1930/12	1350			1	2		744	14 H 4 H			
North E	811/12	1428			ì	X						
Area 3=2	813/12	1144			ì	x						
Pipe #3	3/3/12	1483		1 1	1	1		Day gar			1	
Area 3 = 3	8/3/12				1	3		111111111				
South 2	1/3/1/2	1604			1	1	x					
Eact C	8/1/12	1438			1		7		H. H.V.			
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=N	aOH; 6= Othe	r										
Possible Hazard Identification Non-Hazard Plammable Skin Irritard	Poison	,	Tubecom				ample Disposal (A fee ma Eleium To Client	y be assess Disposi	ed if samples at Rv I ab	are retained Archive	d longer than e For	1 month) Months
Special Instructions/QC Requirements & Comments:	T-OisOil.		UNGWIN			-	rigiditi 10 Oligit	Disposi	a by Edu	Arginy		
							e .					Months 9
Relinquished by	Company:	7.1		Date/Tin		Re	eccived by: FidEx		Company:		Date/Time:	C
Relinquished by:	Company:	iran		US Date/Tin		Re	ectived by:	[Commantin			Date/Time:	8/9/12 SE
							Stouen Clouds	η	Company: 1837 America		Date/Time:	1650-0830
Relinquished by:	Company:			Date/Tin	ie:	Re	eceived by: (Company:		Date/Time:	

TestAmerica St. Louis

13715 Rider Trail North

CUR#188

Chain of Custody Record



THE LEADER IN ENVIRONMENTAL TESTING

QEarth City, MO 63045

\$\text{phone 314.298.8566 fax 314.298.8757} TestAmerica Laboratories, Inc. Client Contact Project Manager: Rob Monnig Site Contact: Date: COC No: Tetra Tech Tel/Fax: 816-729-5621 Lab Contact: Carrier: 3 of K COCs 415 Oak Street Analysis Turnaround Time Kansas City, MO Calendar (C) or Work Days (W) (816) 412-1775 Phone TAT if different from Below SDG No. FAX (xxx) xxx-xxxx 2 weeks Project Name: Precision Standard 1 week Site: 2 days PO# 108 (0244 Sampler Kosert Mannia 1 day Sample Sample Sample Time Sample Identification Type Matrix Sample Specific Notes: Area is #4R 8/2/12 1531 Pi4 - West 7/30/12 1347 8/11/12 1425 North D North F 8/3/12 PE 9019 Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Possible Hazard Identification Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Skin Irritani Poison B Unknown Return To Client ☐ Flammable Disposal By Lab Archive For_ Special Instructions/QC Requirements & Comments: Date/Time: Company: Date/Time: 1657 Date/Time: Relinquished by: Date/Time: Company:

TestAme	erica Lot#(s):	Q.	24	NO G	135	TestAm	erica St. Louis	
THE LEADER IN ENVIRONME	ENTAL TESTING CUR Form #: 1 8 8	-	U		159			
Client: Quote No: COC/RFA No;	JPON RECEIPT FORM Testra tech — Potat 90680 N/A		a	10	1,0		8/9/12- SC	
Initiated By:	Shipping	Date: _ Inform		1/	10	Time: _	1000 093	
Shipper: (Fo	edEx UPS DHL Courier Client			4		Multiple Pa	ckages: ON"	
hipping # (s):*	AND THE RESIDENCE OF THE PROPERTY OF THE PROPE				S	ample 'I'emperature	STANDARD CONTRACTOR STANDS	
1. 4465-	1405-8866 6.					1. Ambient	6,	
2. 4465-						2.	7.	
3.	8					3.	8.	
4,	9,					4.	9.	
	10.					5	10.	
	eorrespond to Numbered Sample Temp lines va	Sample n riance do rchlorate	es NO	T aff	ect the fol	lowing: Metals-Liquid; I	tents below. Temperature Rad tests- Liquid or Solids;	
1. (Ý) Ņ	Are there custody seals present on the cooler?	8.	Y	R)	Are there custody s	seals present on bottles?	
2. Y N N/A	Do custody seals on cooler appear to be tampered with?	9.	Y	N	NA	Do custody seals or tampered with?	n bottles appear to be	
3. N	Were contents of cooler frisked after opening, but before unpacking?	10,	Y	N	WA	Was sample receive not, make note below)	ed with proper pH17 (if	
4, (Y) N	Sample received with Chain of Custody?	11,	Y	N	(N/A)	Containers for C-14 marked with "Do N	4, H-3 & I-129/131 Not Preserve" label?	
5. (Y) N N/A	Does the Chain of Custody match sample ID's on the container(s)?	12.	1	N		Sample received in	proper containers?	
6. Y 🕅	Was sample received broken?	13.	Y	N	(N/A	Headspace in VOA or TOX liquid sam (If Yes, note sample ID's below)		
7. N N	Is sample volume sufficient for analysis?	14.		N	(N/A)	18 F-80 - 881 70807 11 (8 - 8 C - 1 - 2 C	/Workshare received?	
For DOB-AL (Pantex, L Votes:	ANL, Sandia) sites, pH of ALL containers received must	be verifie	d, EX	CEPT	r voa, t	OX, Oil & Grease and so	ils.	
-m.i	reducts and Standard	Pre	cis	in	1			
	, , , , , , , , , , , , , , , , , , ,		-		-fi			
Lid was Loca	se on pit-north and area	16-2	IR					
	npletely off on pit-east		,					
Samples we	그걸 사용 경기를 입어하는 것이 이번 시간 이번 시간 이번 경기를 받았다. 그는 그런 사람들이 하지만 그렇게 그렇게 되었다.	8/9/1	2					
in the second				21.				
, mar					10			
Corrective Action: Client Contact N	Vame:	Info	med	by	70			
☐ Sample(s) proce	ssed "as is"							
☐ Sample(s) on ho Project Management		released	2.0	tify;	-	studio		
TOJOOT MILITAROMOM	MPLETED AT THE TIME THE ITEMS ARE BEING CHECKE	DIN. IPA			COMPLI	STILD BY SOMEONE OTHE	R THAN THE INITIATOR, TH	

TestAmerica Laboratories, Inc.

ANALYTICAL REPORT

Radiation - Standard Precision

Lot #: F2H270452

Rob Monning

Tetra Tech, EMI ARRA 415 Oak Street Kansas City, MO 64106

TESTAMERICA LABORATORIES, INC.

Erika Starman Project Manager

September 24, 2012

Case Narrative LOT NUMBER: F2H270452

This report contains the analytical results for the 30 samples received under chain of custody by TestAmerica St. Louis on August 27, 2012. These samples are associated with your Radiation - Standard Precision project.

The analytical results included in this report meet all applicable quality control procedure requirements.

The test results in this report meet all NELAP requirements for parameters in which accreditations are held by TestAmerica St. Louis. Any exceptions to NELAP requirements are noted in the case narrative. **TestAmerica St. Louis' Florida certification number is E87689.** The case narrative is an integral part of this report.

This report shall not be reproduced, except in full, without the written approval of the laboratory.

All chemical analysis results are based upon sample as received, wet weight, unless noted otherwise. All radiochemistry results are based upon sample as dried and ground with the exception of tritium, unless requested wet weight by the client.

Observations/Nonconformances

Reference the chain of custody and condition upon receipt report for any variations on receipt conditions and temperature of samples on receipt.

There were no nonconformances or observations noted with any analysis on this lot.

METHODS SUMMARY

F2H270452

PARAMETER ANALYTICAL PREPARATION METHOD METHOD

Gamma Spectroscopy - Radium-226 & Hits

EML GA-01-R MOD

References:

EML

"ENVIRONMENTAL MEASUREMENTS LABORATORY PROCEDURES MANUAL" HASL-300 28TH EDITION, VOLUME I and II DEPARTMENT OF ENERGY

SAMPLE SUMMARY

F2H270452

WO # S	SAMPLE#	CLIENT SAMPLE ID	SAMPLED DATE	SAMP TIME
MWA8P	001	REF-1	08/04/12	09:23
Q8AWM	002	REF-2	08/04/12	09:25
MWA8R	003	REF-3	08/04/12	09:27
TSAWM	004	REF-4	08/04/12	09:29
VSAWM	005	REF-5	08/04/12	09:32
WSAWM	006	REF-6	08/04/12	09:34
X8AWM	007	REF-7	08/04/12	09:37
08AWM	008	PIPE #1	08/03/12	14:06
MWA81	009	PIPE #6	08/03/12	15:30
MWA82	010	PIPE #7	08/03/12	15:58
E8AWM	011	PIPE #8	08/03/12	16:37
MWA84	012	PIPE #10	08/03/12	17:16
MWA85	013	AREA 3 #1	08/03/12	11:39
MWA86	014	AREA 3 #6	08/03/12	11:54
MWA87	015	AREA 3 #7R	08/03/12	17:17
88AWM	016	AREA 1	08/03/12	17:26
MWA89	017	AREA 5	08/01/12	17:04
MWA9A	018	AREA 6 #3	08/02/12	10:00
MWA9C	019	SOUTH 3	07/31/12	16:15
MWA9D	020	SOUTH 4	07/31/12	16:08
MWA9E	021	SOUTH 5	07/31/12	16:20
MWA9F	022	WEST A	08/01/12	11:12
MWA9G	023	WEST B	08/01/12	11:14
MWA9H	024	WEST D	08/01/12	11:20
MWA9J	025	WEST E	08/01/12	11:27
MWA9K	026	WEST C	08/01/12	11:24
MWA9L	027	WEST F	08/01/12	11:30
MWA9M	028	NORTH C	08/01/12	11:17
MWA9N	029	NORTH A	08/01/12	11:36
MWA9P	030	NORTH B	08/01/12	11:42

NOTE(S):

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results,
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

Client Sample ID: REF-1

Radiochemistry

Lab Sample ID: F2H270452-001 Work Order:

Matrix:

MWA8P

Date Collected:

08/04/12 0923

SOLID

Date Received:

08/27/12 0925

Total	

Parameter	Result	Qual	Uncert. (2 g+/-)	RL	mdc	Prep Date	Analysis Date
Gamma Ra-226 & Hi	ts By EML GA-	01-R MOD	p	Ci/g	Batch #	2243081	Yld %
Actinium 227	0.09	U	0.24		1.0	08/29/12	09/19/12
Actinium 228	0.59		0.19		0.11	08/29/12	09/19/12
Bismuth 212	0.22	U	0.30		0.50	08/29/12	09/19/12
Bismuth 214	0.69		0.16		0.12	08/29/12	09/19/12
Lead 210	2.5		1.2		1.6	08/29/12	09/19/12
Lead 212	0.50		0.11		0.1	08/29/12	09/19/12
Lead 214	0.62		0.16		0.14	08/29/12	09/19/12
Potassium 40	17.0		2.4		0.8	08/29/12	09/19/12
Protactinium 231	0.39	U	0.52		1.6	08/29/12	09/19/12
Radium (226)	0.69		0.16	1.00	0.12	08/29/12	09/19/12
Radium 228	0.59		0.19		0.11	08/29/12	09/19/12
Thallium 208	0.120		0.055		0.074	08/29/12	09/19/12
Thorium 234	0.33	σ	0.39		1.7	08/29/12	09/19/12
Uranium 235	0.12	U	0.22		0.37	08/29/12	09/19/12
Uranium 238	0.33	U	0.39		1.7	08/29/12	09/19/12

Client Sample ID: REF-1 DUP

Radiochemistry

Lab Sample ID: F2H270452-001X Work Order:

Matrix:

MWA8P SOLID Date Collected: Date Received:

08/04/12 0923 25

00	127	110	00'
001	61	/12	092

			Total Uncert.			Prep	Analysis
Parameter	Result Qu	Qual	(2 o+/-)	RL	mdc	Date	Date
Gamma Ra-226 & Hit	s By EML GA-	01-R MOD	p	Ci/g	Batch	2243081	Yld %
Actinium 227	-0.35	U	0.60		0.99	08/29/12	09/19/12
Actinium 228	0.65		0.21		0.33	08/29/12	09/19/12
Bismuth 212	0.0	U	0.46		0.72	08/29/12	09/19/12
Bismuth 214	0.75		0.22		0.18	08/29/12	09/19/12
Lead 210	1	U	1.6		2.8	08/29/12	09/19/12
Lead 212	0.49		0.18		0.18	08/29/12	09/19/12
Lead 214	0.91		0.20		0.15	08/29/12	09/19/12
Potassium 40	16.5		3.0		1.1	08/29/12	09/19/12
Protactinium 231	0.0	U	1.2		2.9	08/29/12	09/19/12
Radium (226)	0.75		0.22	1.00	0.18	08/29/12	09/19/12
Radium 228	0.65		0.21		0.33	08/29/12	09/19/12
Thallium 208	0.173		0.078		0.083	08/29/12	09/19/12
Thorium 234	0.7	U	1.4		2.4	08/29/12	09/19/12
Uranium 235	0.15	U	0.26		0.49	08/29/12	09/19/12
Uranium 238	0.7	U	1.4		2.4	08/29/12	09/19/12

NOTE (S)

Data are incomplete without the case narrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC.

Client Sample ID: REF-2

Radiochemistry

Lab Sample ID: F2H270452-002

Date Collected:

08/04/12 0925

Work Order: Matrix:

Q8AWM SOLID Date Received:

08/27/12 0925

- 41	o.	4.	2	ъ.	

Parameter	Result	Qual	Uncert. (2 g+/-)	RL	mda	Prep Date	Analysis Date	
Gamma Ra-226 & Hit	ts By EML GA-	01-R MOD	p	Ci/g	Batch #	2243081	Yld %	
Actinium 227	-0.06	U	0.17		0.72	08/29/12	09/19/12	
Actinium 228	0.51		0.26		0.44	08/29/12	09/19/12	
Bismuth 212	0.39	ū	0.69		1.2	08/29/12	09/19/12	
Bismuth 214	1.12		0.27		0.14	08/29/12	09/19/12	
Lead 210	1.8	U	1.8		2.9	08/29/12	09/19/12	
Lead 212	0.76		0.22		0.21	08/29/12	09/19/12	
Lead 214	1.35		0.29		0.16	08/29/12	09/19/12	
Potassium 40	13.5		2.9		1.3	08/29/12	09/19/12	
Protactinium 231	0.7	U	1.8		3.2	08/29/12	09/19/12	
Radium (226)	1.12		0.27	1.00	0.14	08/29/12	09/19/12	
Radium 228	0.51		0.26		0.44	08/29/12	09/19/12	
Thallium 208	0.35		0.11		0.08	08/29/12	09/19/12	
Thorium 234	0.66	U	0.90		2.9	08/29/12	09/19/12	
Uranium 235	0.40	U	0.33		0.54	08/29/12	09/19/12	
Uranium 238	0.66	U	0.90		2.9	08/29/12	09/19/12	

Data are incomplete without the case narrative.

Client Sample ID: REF-3

Radiochemistry

Lab Sample ID: F2H270452-003

Work Order:

Matrix:

MWA8R SOLID

Date Collected: Date Received:

08/04/12 0927

08/27/12 0925

Parameter	Result	Qual	Total Uncert. (2 g+/-)	RL	mda	Prep Date	Analysis Date
Gamma Ra-226 & Hit	s By EML GA-	01-R MOD	р	Ci/g	Batch #	2243081	Yld %
Actinium 227	-0.04	U	0.41		0.70	08/29/12	09/19/12
Actinium 228	0.31	υ	0.16		0.40	08/29/12	09/19/12
Bismuth 212	0.14	U	0.51		0.90	08/29/12	09/19/12
Bismuth 214	1.44		0.30		0.18	08/29/12	09/19/12
Lead 210	3.2		2.0		2.4	08/29/12	09/19/12
Lead 212	0.36		0.12		0.12	08/29/12	09/19/12
Lead 214	1.58		0.27		0.17	08/29/12	09/19/12
Potassium 40	6.5		1.6		0.9	08/29/12	09/19/12
Protactinium 231	0.31	U	0.31		2.4	08/29/12	09/19/12
Radium (226)	1.44		0.30	1.00	0.18	08/29/12	09/19/12
Radium 228	0.31	U	0.16		0.40	08/29/12	09/19/12
Thallium 208	0.121		0.061		0.059	08/29/12	09/19/12
Thorium 234	2.1		1.5		1.9	08/29/12	09/19/12
Uranium 235	0.16	Ü	0.25		0.50	08/29/12	09/19/12
Uranium 238	2.1		1.5		1.9	08/29/12	09/19/12

Data are incomplete without the case narrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC.

Client Sample ID: REF-4

Radiochemistry

Lab Sample ID: F2H270452-004

Date Collected:

08/04/12 0929

Work Order: Matrix:

T8AWM SOLID Date Received:

08/27/12 0925

			Total Uncert. (2 s+/-)			Prep Date	Analysis Date
Parameter	Result	Qual	(2 017 7	RL	mdc		1997.575
Gamma Ra-226 & Hit	s By EML GA-	01-R MOD	p	Ci/g	Batch #	2243081	Yld %
Actinium 227	-0.15	U	0.29		0.49	08/29/12	09/19/12
Actinium 228	1.02		0.27		0.11	08/29/12	09/19/12
Bismuth 212	0.25	U	0.43		0.73	08/29/12	09/19/12
Bismuth 214	1.11		0.21		0.09	08/29/12	09/19/12
Lead 210	3.4		1.7		2.2	08/29/12	09/19/12
Lead 212	0.81		0.16		0.13	08/29/12	09/19/12
Lead 214	1.17		0.21		0.11	08/29/12	09/19/12
Potassium 40	14.6		2.4		1	08/29/12	09/19/12
Protactinium 231	0.47	U	0.39		2.2	08/29/12	09/19/12
Radium (226)	1.11		0.21	1.00	0.09	08/29/12	09/19/12
Radium 228	1.02		0.27		0.11	08/29/12	09/19/12
Thallium 208	0.300		0.079		0.050	08/29/12	09/19/12
Thorium 234	0.51	U	0.41		2.0	08/29/12	09/19/12
Uranium 235	0.17	U	0.23		0.41	08/29/12	09/19/12
Uranium 238	0.51	U	0.41		2.0	08/29/12	09/19/12

NOTE (S)

Data are incomplete without the case narrative.

Client Sample ID: REF-5

Radiochemistry

Lab Sample ID: F2H270452-005

Date Collected:

08/04/12 0932

Work Order: Matrix:

V8AWM SOLID Date Received:

08/27/12 0925

Parameter	Result	Qual	Total Uncert. (2 g+/-)	RL	mdc	Prep Date	Analysis Date
Gamma Ra-226 & Hi	ts By EML GA-	01-R MOD	I	ci/g	Batch #	2243081	Yld %
Actinium 227	-0.32	U	0.53		0.88	08/29/12	09/19/12
Actinium 228	0.87		0.24		0.11	08/29/12	09/19/12
Bismuth 212	0.18	U	0.37		0.64	08/29/12	09/19/12
Bismuth 214	1.07		0.21		0.08	08/29/12	09/19/12
Lead 210	0.9	U	1.3		2.2	08/29/12	09/19/12
Lead 212	0.54		0.14		0.14	08/29/12	09/19/12
Lead 214	1.15		0.21		0.11	08/29/12	09/19/12
Potassium 40	13.5		2.3		0.7	08/29/12	09/19/12
Protactinium 231	0.59	Ω	0.76		1.7	08/29/12	09/19/12
Radium (226)	1.07		0.21	1.00	0.08	08/29/12	09/19/12
Radium 228	0.87		0.24		0.11	08/29/12	09/19/12
Thallium 208	0.152		0.061		0.069	08/29/12	09/19/12
Thorium 234	1.20	U	0.63		2.1	08/29/12	09/19/12
Uranium 235	0.09	U	0.29		0.50	08/29/12	09/19/12
Uranium 238	1.20	U	0.63		2.1	08/29/12	09/19/12

Data are incomplete without the case narrative.

Client Sample ID: REF-6

Radiochemistry

Lab Sample ID: F2H270452-006

Date Collected:

08/04/12 0934

Work Order: Matrix:

MWA8W SOLID Date Received:

08/27/12 0925

Parameter	Result	Qual	Total Uncert. (2 g+/-)	RL	mdc	Prep Date	Analysis Date
Gamma Ra-226 & Hit	s By EML GA-	01-R MOD	p	Ci/g	Batch #	2243081	Yld %
Actinium 227	-0.44	Ω	0.46		0.75	08/29/12	09/19/12
Actinium 228	0.38		0.16		0.30	08/29/12	09/19/12
Bismuth 212	0.28	U	0.40		0.67	08/29/12	09/19/12
Bismuth 214	1.50		0.26		0.14	08/29/12	09/19/12
Lead 210	4.3		2.0		2.5	08/29/12	09/19/12
Lead 212	0.38		0.11		0.12	08/29/12	09/19/12
Lead 214	1.68		0.26		0.17	08/29/12	09/19/12
Potassium 40	9.0		1.7		0.6	08/29/12	09/19/12
Protactinium 231	0.17	υ	0.30		2.4	08/29/12	09/19/12
Radium (226)	1.50		0.26	1.00	0.14	08/29/12	09/19/12
Radium 228	0.38		0.16		0.30	08/29/12	09/19/12
Thallium 208	0.220		0.071		0.064	08/29/12	09/19/12
Thorium 234	1.83	U	0.74		2.1	08/29/12	09/19/12
Uranium 235	0.17	U	0.27		0.46	08/29/12	09/19/12
Uranium 238	1.83	U	0.74		2.1	08/29/12	09/19/12

NOTE (S)

Data are incomplete without the case narrative.

Client Sample ID: REF-7

Radiochemistry

Lab Sample ID: F2H270452-007

Date Collected:

08/04/12 0937

Work Order: Matrix:

X8AWM SOLID Date Received:

08/27/12 0925

			Total Uncert.		mda	Prep Date	Analysis Date
Parameter	Result	Qual	(2 σ+/-)	RL			
Gamma Ra-226 & Hit	s By EML GA-	01-R MOD	p	Ci/g	Batch #	2243081	Yld %
Actinium 227	-0.39	U	0.39		0.64	08/29/12	09/19/12
Actinium 228	0.63		0.14		0.10	08/29/12	09/19/12
Bismuth 212	0.02	U	0.22		0.40	08/29/12	09/19/12
Bismuth 214	0.95		0.19		0.12	08/29/12	09/19/12
Lead 210	3.7		1.8		1.7	08/29/12	09/19/12
Lead 212	0.56		0.12		0.10	08/29/12	09/19/12
Lead 214	1.06		0.18		0.11	08/29/12	09/19/12
Potassium 40	14.9		2.1		0.5	08/29/12	09/19/12
Protactinium 231	0.14	U	0.16		1.7	08/29/12	09/19/12
Radium (226)	0.95		0.19	1.00	0.12	08/29/12	09/19/12
Radium 228	0.63		0.14		0.10	08/29/12	09/19/12
Thallium 208	0.213		0.058		0.037	08/29/12	09/19/12
Thorium 234	0.55	U	0.41		1.7	08/29/12	09/19/12
Uranium 235	0.1	σ	0.22		0.37	08/29/12	09/19/12
Uranium 238	0.55	U	0.41		1.7	08/29/12	09/19/12

Data are incomplete without the case narrative.

Tetra Tech, EMI (ARRA) Client Sample ID: PIPE #1

Radiochemistry

Lab Sample ID: F2H270452-008

Date Collected:

08/03/12 1406

Work Order: Matrix:

MWA80 SOLID Date Received:

08/27/12 0925

Parameter	Result	Qual	Total Uncert. (2 g+/-)	RL	mdc	Prep Date	Analysis Date
Gamma Ra-226 & Hit	s By EML GA-	01-R MOD	po	Ci/g	Batch #	2243081	Yld %
Actinium 227	0.0	U	0.31		0.53	08/29/12	09/19/12
Actinium 228	0.91		0.25		0.23	08/29/12	09/19/12
Bismuth 212	0.16	U	0.43		0.75	08/29/12	09/19/12
Bismuth 214	3.45		0.47		0.16	08/29/12	09/19/12
Lead 210	0.3	U	1.4		2.5	08/29/12	09/19/12
Lead 212	0.68		0.15		0.14	08/29/12	09/19/12
Lead 214	3.61		0.45		0.19	08/29/12	09/19/12
Potassium 40	21.4		3.0		0.6	08/29/12	09/19/12
Protactinium 231	-0.7	U	1.5		2.5	08/29/12	09/19/12
Radium (226)	3.45		0.47	1.00	0.16	08/29/12	09/19/12
Radium 228	0.91		0.25		0.23	08/29/12	09/19/12
Thallium 208	0.238		0.085		0.085	08/29/12	09/19/12
Thorium 234	0.39	U	0.74		2.3	08/29/12	09/19/12
Uranium 235	0.32	U	0.36		0.56	08/29/12	09/19/12
Uranium 238	0.39	U	0.74		2.3	08/29/12	09/19/12

NOTE (S)

Data are incomplete without the case narrative.

Client Sample ID: PIPE #6

Radiochemistry

Lab Sample ID: F2H270452-009

Date Collected:

08/03/12 1530

Work Order: Matrix:

MWA81 SOLID Date Received:

08/27/12 0925

Parameter	Result	Qual	Total Uncert. (2 g+/-)	RL	mdc	Prep Date	Analysis Date
Gamma Ra-226 & Hi	ts By EML GA-	01-R MOD	po	Ci/g	Batch #	2243081	Yld %
Actinium 227	0.08	U	0.24		0.96	08/29/12	09/19/12
Actinium 228	0.85		0.21		0.24	08/29/12	09/19/12
Bismuth 212	0.80		0.35		0.31	08/29/12	09/19/12
Bismuth 214	0.66		0.18		0.15	08/29/12	09/19/12
Lead 210	0.2	U	1.3		2.4	08/29/12	09/19/12
Lead 212	0.60		0.16		0.15	08/29/12	09/19/12
Lead 214	0.79		0.16		0.15	08/29/12	09/19/12
Potassium 40	21.6		2.9		0.8	08/29/12	09/19/12
Protactinium 231	0.20	U	0.73		1.3	08/29/12	09/19/12
Radium (226)	0.66		0.18	1.00	0.15	08/29/12	09/19/12
Radium 228	0.85		0.21		0.24	08/29/12	09/19/12
Thallium 208	0.203		0.078		0.082	08/29/12	09/19/12
Thorium 234	1	U	1.2		1.7	08/29/12	09/19/12
Uranium 235	0.17	U	0.25		0.41	08/29/12	09/19/12
Uranium 238	1	U	1.2		1.7	08/29/12	09/19/12

NOTE (S)

Data are incomplete without the case narrative.

Client Sample ID: PIPE #7

Radiochemistry

Lab Sample ID: F2H270452-010

Date Collected:

08/03/12 1558

Work Order: Matrix:

MWA82 SOLID Date Received:

08/27/12 0925

Parameter	Result	Qual	Total Uncert. (2 c+/-)	RL	/ mdc	Prep Date	Analysis Date
Gamma Ra-226 & Hi	ts By EML GA-	01-R MOD		pCi/g .	Batch	# 2243081	Yld %
Actinium 227	-0.30	U	0.42		0.70	08/29/12	09/19/12
Actinium 228	1.06		0.27		0.22	08/29/12	09/19/12
Bismuth 212	1.59		0.53		0.29	08/29/12	09/19/12
Bismuth 214	1.12		0.26		0.18	08/29/12	09/19/12
Lead 210	2.5		1.5		2.0	08/29/12	09/19/12
Lead 212	1.00		0.20		0.12	08/29/12	09/19/12
Lead 214	1.16		0.25		0.18	08/29/12	09/19/12
Potassium 40	19.9		3.2		0.9	08/29/12	09/19/12
Protactinium 231	1.3	U	1.1		2.4	08/29/12	09/19/12
Radium (226)	1.12		0.26	1.00	0.18	08/29/12	09/19/12
Radium 228	1.06		0.27		0.22	08/29/12	09/19/12
Thallium 208	0.36		0.11		0.08	08/29/12	09/19/12
Thorium 234	1.5	U	1.4		2.3	08/29/12	09/19/12
Uranium 235	0.25	υ	0.27		0.54	08/29/12	09/19/12
Uranium 238	1.5	U	1.4		2.3	08/29/12	09/19/12

Data are incomplete without the case narrative.

Tetra Tech, EMI (ARRA) Client Sample ID: PIPE #8

Radiochemistry

Lab Sample ID: F2H270452-011

Date Collected:

08/03/12 1637

Work Order: Matrix:

E8AWM SOLID Date Received:

08/27/12 0925

Parameter	Result	Qual	Total Uncert. (2 g+/-)	RL	mdo	Prep Date	Analysis Date
Gamma Ra-226 & Hi	ts By EML GA-	01-R MOD	p(Ci/g	Batch	2243081	Yld %
Actinium 227	0.03	U	0.58		0.99	08/29/12	09/19/12
Actinium 228	0.84		0.21		0.19	08/29/12	09/19/12
Bismuth 212	0.26	U	0.37		0.61	08/29/12	09/19/12
Bismuth 214	0.91		0.17		0.06	08/29/12	09/19/12
Lead 210	3.6		1.6		2.0	08/29/12	09/19/12
Lead 212	0.58		0.12		0.09	08/29/12	09/19/12
Lead 214	0.98		0.18		0.11	08/29/12	09/19/12
Potassium 40	20.0		2.9		0.5	08/29/12	09/19/12
Protactinium 231	0.28	U	0.46		1.5	08/29/12	09/19/12
Radium (226)	0.91		0.17	1.00	0.06	08/29/12	09/19/12
Radium 228	0.84		0.21		0.19	08/29/12	09/19/12
Thallium 208	0.293		0.080		0.058	08/29/12	09/19/12
Thorium 234	1.5		1.1		1.4	08/29/12	09/19/12
Uranium 235	0.11	U	0.20		0.33	08/29/12	09/19/12
Uranium 238	1.5		1.1		1.4	08/29/12	09/19/12

Data are incomplete without the case narrative.

Client Sample ID: PIPE #10

Radiochemistry

Lab Sample ID: F2H270452-012

Date Collected:

08/03/12 1716

Work Order: Matrix:

MWA84 SOLID Date Received:

08/27/12 0925

Total

Parameter	Result	Qual	Uncert. (2 σ+/-)	RL	mdc	Prep Date	Analysis Date
Gamma Ra-226 & Hit	ts By EML GA-	01-R MOD	р	Ci/g	Batch #	2243081	Yld %
Actinium 227	-0.37	U	0.53		0.87	08/29/12	09/19/12
Actinium 228	0.97	125	0.28		0.29	08/29/12	09/19/12
Bismuth 212	0.28	U	0.44		0.74	08/29/12	09/19/12
Bismuth 214	1.48		0.30		0.16	08/29/12	09/19/12
Lead 210	3.1		2.0		3.0	08/29/12	09/19/12
Lead 212	0.85		0.19		0.15	08/29/12	09/19/12
Lead 214	1.68		0.28		0.17	08/29/12	09/19/12
Potassium 40	21.2		3.3		0.8	08/29/12	09/19/12
Protactinium 231	0.047	U	0.065		3.0	08/29/12	09/19/12
Radium (226)	1.48		0.30	1.00	0.16	08/29/12	09/19/12
Radium 228	0.97		0.28		0.29	08/29/12	09/19/12
Thallium 208	0.34		0.10		0.08	08/29/12	09/19/12
Thorium 234	0.49	U	0.84		2.8	08/29/12	09/19/12
Uranium 235	0.26	U	0.32		0.53	08/29/12	09/19/12
Uranium 238	0.49	U	0.84		2.8	08/29/12	09/19/12

Tetra Tech, EMI (ARRA) Client Sample ID: AREA 3 #1

Radiochemistry

Lab Sample ID: F2H270452-013

Date Collected:

08/03/12 1139

Work Order:

MWA85

Date Received:

08/27/12 0925

Matrix:	SOLID	
		Option 18

			Total Uncert.			Prep	Analysis
Parameter	Result	Qual	(2 5+/-)	RL	mdc	Date	Date
Gamma Ra-226 & Hi	ts By EML GA-	01-R MOD	p	Ci/g	Batch #	2243081	Yld %
Actinium 227	0.17	U	0.24		1.1	08/29/12	09/19/12
Actinium 228	0.70		0.19		0.19	08/29/12	09/19/12
Bismuth 212	0.44	U	0.32		0.46	08/29/12	09/19/12
Bismuth 214	1.23		0.22		0.11	08/29/12	09/19/12
Lead 210	1.9	U	1.4		2.0	08/29/12	09/19/12
Lead 212	0.54		0.12		0.13	08/29/12	09/19/12
Lead 214	1.27		0.22		0.13	08/29/12	09/19/12
Potassium 40	19.9		2.8		0.7	08/29/12	09/19/12
Protactinium 231	0.53	U	0.83		1.8	08/29/12	09/19/12
Radium (226)	1.23		0.22	1.00	0.11	08/29/12	09/19/12
Radium 228	0.70		0.19		0.19	08/29/12	09/19/12
Thallium 208	0.102		0.058		0.085	08/29/12	09/19/12
Thorium 234	-0.03	U	0.19		2.1	08/29/12	09/19/12
Uranium 235	0.26	U	0.23		0.38	08/29/12	09/19/12
Uranium 238	-0.03	U	0.19		2.1	08/29/12	09/19/12

NOTE (S)

Data are incomplete without the case narrative.

Client Sample ID: AREA 3 #6

Radiochemistry

Lab Sample ID: F2H270452-014

Matrix:

Work Order:

MWA86 SOLID Date Collected:

08/03/12 1154

Date Received:

08/27/12 0925

Parameter	Result	Qual	Total Uncert. (2 g+/-)	RL	mdc	Prep Date	Analysis Date
Gamma Ra-226 & Hit	ts By EML GA-	01-R MOD	p	Ci/g	Batch #	2243081	Yld %
Actinium 227	-0.02	U	0.19		1.5	08/29/12	09/19/12
Actinium 228	1.32		0.26		0.16	08/29/12	09/19/12
Bismuth 212	0.32	U	0.42		0.70	08/29/12	09/19/12
Bismuth 214	0.80		0.21		0.18	08/29/12	09/19/12
Lead 210	1.1	σ	1.6		2.5	08/29/12	09/19/12
Lead 212	0.90		0.17		0.13	08/29/12	09/19/12
Lead 214	0.93		0.17		0.15	08/29/12	09/19/12
Potassium 40	21.2		3.0		0.5	08/29/12	09/19/12
Protactinium 231	0.58	U	0.48		2.3	08/29/12	09/19/12
Radium (226)	0.80		0.21	1.00	0.18	08/29/12	09/19/12
Radium 228	1.32		0.26		0.16	08/29/12	09/19/12
Thallium 208	0.340		0.094		0.082	08/29/12	09/19/12
Thorium 234	1.9	U	1.7		2.1	08/29/12	09/19/12
Uranium 235	0.09	U	0.22		0.43	08/29/12	09/19/12
Uranium 238	1.9	U	1.7		2.1	08/29/12	09/19/12

NOTE (S)

Data are incomplete without the case narrative.

Client Sample ID: AREA 3 #7R

Radiochemistry

Lab Sample ID: F2H270452-015

Work Order:

Matrix:

MWA87 SOLID Date Collected: Date Received: 08/03/12 1717

08/27/12 0925

To	ta	1	
**-			2

Parameter	Result	Qual	Uncert. (2 g+/-)	RL,	mdc	Prep Date	Analysis Date
Gamma Ra-226 & Hi	ts By EML GA-	01-R MOD	р	Ci/g	Batch	# 2243081	Yld %
Actinium 227	-0.66	U	0.56		0.90	08/29/12	09/19/12
Actinium 228	1.43		0.27		0.08	08/29/12	09/19/12
Bismuth 212	1.29		0.43		0.28	08/29/12	09/19/12
Bismuth 214	0.91		0.19		0.14	08/29/12	09/19/12
Lead 210	-0.9	U	1.5		2.4	08/29/12	09/19/12
Lead 212	1.00		0.22		0.17	08/29/12	09/19/12
Lead 214	1.21		0.22		0.16	08/29/12	09/19/12
Potassium 40	21.2		2.9		0.7	08/29/12	09/19/12
Protactinium 231	0.70	U	0.46		2.6	08/29/12	09/19/12
Radium (226)	0.91		0.19	1.00	0.14	08/29/12	09/19/12
Radium 228	1.43		0.27		0.08	08/29/12	09/19/12
Thallium 208	0.51		0.11		0.06	08/29/12	09/19/12
Thorium 234	0.9	υ	1.3		2.1	08/29/12	09/19/12
Uranium 235	0.09	U	0.29		0.50	08/29/12	09/19/12
Uranium 238	0.9	υ	1.3		2.1	08/29/12	09/19/12
Thorium 234 Uranium 235 Uranium 238	0.09	υ	0.29		0.50	08/29/12	0

NOTE (S)

Data are incomplete without the case narrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC.

Client Sample ID: AREA 1

Radiochemistry

Work Order:

Matrix:

Lab Sample ID: F2H270452-016

88AWM SOLID Date Collected: Date Received:

08/03/12 1726

08/27/12 0925

Parameter	Result	Qual	Uncert. (2 σ+/-)	RL	mdc	Prep Date	Analysis Date
Gamma Ra-226 & Hits	By EML GA-01-	R MOD	р	Ci/g	Batch #	2243081	Yld %
Actinium 227	-0.88	U	0.66		1.1	08/29/12	09/19/12
Actinium 228	0.55		0.24		0.27	08/29/12	09/19/12
Bismuth 212	0.60	U	0.53		0.84	08/29/12	09/19/12
Bismuth 214	7.00		0.86		0.23	08/29/12	09/19/12
Lead 210	3,4		1.8		2.6	08/29/12	09/19/12
Lead 212	0.80		0.18		0.18	08/29/12	09/19/12
Lead 214	7.23		0.83		0.23	08/29/12	09/19/12
Potassium 40	20.6		3.0		0.8	08/29/12	09/19/12
Protactinium 231	0.39	U	0.83		2.6	08/29/12	09/19/12
Radium (226)	7.00		0.86	1.00	0.23	08/29/12	09/19/12
Radium 228	0.55		0.24		0.27	08/29/12	09/19/12
Thallium 208	0.160		0.091		0.14	08/29/12	09/19/12
Thorium 234	0.35	U	0.87		3.2	08/29/12	09/19/12
Uranium 235	~0.1	U	0.45		0.75	08/29/12	09/19/12
Uranium 238	0.35	U	0.87		3.2	08/29/12	09/19/12

Data are incomplete without the case narrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC.

Client Sample ID: AREA 5

Radiochemistry

Lab Sample ID: F2H270452-017

Work Order:

Matrix:

MWA89 SOLID Date Collected:

08/01/12 1704

Date Received:

08/27/12 0925

			Total Uncert.			Prep	Analysis
Parameter	Result	Qual	(2 σ+/-)	RL	mdc	Date	Date
Gamma Ra-226 & Hi	ts By EML GA-	01-R MOD	p	Ci/g	Batch #	2243081	Yld %
Actinium 227	-0.05	U	0.75		1.3	08/29/12	09/19/12
Actinium 228	1.13		0.26		0.25	08/29/12	09/19/12
Bismuth 212	0.68		0.44		0.64	08/29/12	09/19/12
Bismuth 214	1.55		0.30		0.17	08/29/12	09/19/12
Lead 210	3.6		2.1		2.6	08/29/12	09/19/12
Lead 212	1.16		0.21		0.15	08/29/12	09/19/12
Lead 214	1.50		0.26		0.15	08/29/12	09/19/12
Potassium 40	17.3		2.6		1.1	08/29/12	09/19/12
Protactinium 231	0.33	U	0.30		2.6	08/29/12	09/19/12
Radium (226)	1.55		0.30	1.00	0.17	08/29/12	09/19/12
Radium 228	1.13		0.26		0.25	08/29/12	09/19/12
Thallium 208	0.347		0.088		0.074	08/29/12	09/19/12
Thorium 234	1.4	U	1.7		2.3	08/29/12	09/19/12
Uranium 235	0.15	U	0.40		0.58	08/29/12	09/19/12
Uranium 238	1.4	U	1.7		2.3	08/29/12	09/19/12

Data are incomplete without the case narrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC.

Tetra Tech, EMI (ARRA) Client Sample ID: AREA 6 #3

Radiochemistry

Lab Sample ID: F2H270452-018

Work Order:

Matrix:

MWA9A SOLID Date Collected:

08/02/12 1000

Date Received:

08/27/12 0925

				Total Uncert.			Prep	Analysis
eter		Result	Qual	(2 σ+/-)	RL	mdc	Date	Date
a Ra-226	& Hits	By EML	GA-01-R MOD		pCi/g	Batch #	2243081	Yld %
nium 227		-1.22	U	0.77		1.2	08/29/12	09/19/12

Parameter	Result	Qual	(2 g+/-)	RL	mdc	Date	Date
Gamma Ra-226 & Hit	s By EML GA-	01-R MOD	p	Ci/g	Batch #	2243081	Yld %
Actinium 227	-1.22	U	0.77		1.2	08/29/12	09/19/12
Actinium 228	1.24		0.31		0.26	08/29/12	09/19/12
Bismuth 212	1.27		0.50		0.44	08/29/12	09/19/12
Bismuth 214	5.84		0.74		0.21	08/29/12	09/19/12
Lead 210	6.3		2.9		3.4	08/29/12	09/19/12
Lead 212	1.04		0.20		0.18	08/29/12	09/19/12
Lead 214	6.02		0.71		0.21	08/29/12	09/19/12
Potassium 40	20.3		2.9		0.8	08/29/12	09/19/12
Protactinium 231	-0.09	U	2.1		3.6	08/29/12	09/19/12
Radium (226)	5.84		0.74	1.00	0.21	08/29/12	09/19/12
Radium 228	1.24		0.31		0.26	08/29/12	09/19/12
Thallium 208	0.38		0.13		0.11	08/29/12	09/19/12
Thorium 234	0.87	U	0.61		3.3	08/29/12	09/19/12
Uranium 235	-0.02	U	0.45		0.76	08/29/12	09/19/12
Uranium 238	0.87	U	0.61		3.3	08/29/12	09/19/12

Data are incomplete without the case narrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC.

Client Sample ID: SOUTH 3

Radiochemistry

Lab Sample ID: F2H270452-019

Work Order:

Matrix:

MWA9C SOLID

Date Collected: Date Received:

07/31/12 1615

08/27/12 0925

Total

Parameter	Result	Qual	Uncert. (2 σ+/-)	RL	mdc	Prep Date	Analysis Date
Gamma Ra-226 & Hits	By EML GA-	1-R MOD	F	Ci/g	Batch #	2243081	Yld %
Actinium 227	0.11	U	0.58		1.0	08/29/12	09/19/12
Actinium 228	0.49	U	0.38		0.58	08/29/12	09/19/12
Bismuth 212	0.24	U	0.71		1.3	08/29/12	09/19/12
Bismuth 214	5.84		0.84		0.28	08/29/12	09/19/12
Lead 210	7.3		3.8		4.6	08/29/12	09/19/12
Lead 212	0.51		0.18		0.24	08/29/12	09/19/12
Lead 214	6.15		0.81		0.27	08/29/12	09/19/12
Potassium 40	8.4		2.2		1.3	08/29/12	09/19/12
Protactinium 231	1.7	U	1.8		3.9	08/29/12	09/19/12
Radium (226)	5.84		0.84	1.00	0.28	08/29/12	09/19/12
Radium 228	0.49	U	0.38		0.58	08/29/12	09/19/12
Thallium 208	0.081	U	0.096		0.16	08/29/12	09/19/12
Thorium 234	0.5	U	1.1		3.8	08/29/12	09/19/12
Uranium 235	0.08	U	0.63		1.1	08/29/12	09/19/12
Uranium 238	0.5	U	1.1		3.8	08/29/12	09/19/12

Data are incomplete without the case narrative.

Client Sample ID: SOUTH 4

Radiochemistry

Work Order:

Matrix:

Lab Sample ID: F2H270452-020

MWA9D SOLID Date Collected: Date Received:

07/31/12 1608

08/27/12 0925

Parameter	Result	Qual	Total Uncert. (2 g+/-)	RL	mde	Prep Date	Analysis Date
Gamma Ra-226 & Hit	ts By EML GA-	01-R MOD	po	Ci/g	Batch #	2243081	Yld %
Actinium 227	0.21	υ	0.28		1.0	08/29/12	09/19/12
Actinium 228	0.19	U	0.19		0.39	08/29/12	09/19/12
Bismuth 212	0.24	U	0.46		0.80	08/29/12	09/19/12
Bismuth 214	2.93		0.44		0.16	08/29/12	09/19/12
Lead 210	4.8		2.2		2.5	08/29/12	09/19/12
Lead 212	0.32		0.11		0.13	08/29/12	09/19/12
Lead 214	3.01		0.42		0.20	08/29/12	09/19/12
Potassium 40	6.0		1.5		0.8	08/29/12	09/19/12
Protactinium 231	0.16	U	0.32		2.9	08/29/12	09/19/12
Radium (226)	2.93		0.44	1.00	0.16	08/29/12	09/19/12
Radium 228	0.19	U	0.19		0.39	08/29/12	09/19/12
Thallium 208	0.074	U	0.073		0.098	08/29/12	09/19/12
Thorium 234	1.02	U	0.79		2.3	08/29/12	09/19/12
Uranium 235	0.27	U	0.29		0.40	08/29/12	09/19/12
Uranium 238	1.02	U	0.79		2.3	08/29/12	09/19/12

NOTE (S)

Data are incomplete without the case narrative.

Client Sample ID: SOUTH 5

Radiochemistry

Lab Sample ID: F2H270452-021

Date Collected:

07/31/12 1620

Work Order: Matrix:

MWA9E SOLID Date Received:

08/27/12 0925

Parameter	Result	Qual	Total Uncert. (2 σ +/-)	RL	mdc	Prep Date	Analysis Date
Gamma Ra-226 & Hi	ts By EML GA-	01-R MOD	p	Ci/g	Batch #	2242093	Yld %
Actinium 227	-0.6	U	1.0		1.7	08/29/12	09/19/12
Actinium 228	0.90		0.44		0.73	08/29/12	09/19/12
Bismuth 212	1.02	U	0.87		1.4	08/29/12	09/19/12
Bismuth 214	35.2		3.8		0.4	08/29/12	09/19/12
Lead 210	21.8		5.5		5.9	08/29/12	09/19/12
Lead 212	0.79		0.26		0.37	08/29/12	09/19/12
Lead 214	37.4		4.0		0.5	08/29/12	09/19/12
Potassium 40	22.2		3.6		1.7	08/29/12	09/19/12
Protactinium 231	0.7	U	2.7		4.0	08/29/12	09/19/12
Radium (226)	35.2		3.8	1.0	0.4	08/29/12	09/19/12
Radium 228	0.90		0.44		0.73	08/29/12	09/19/12
Thallium 208	0.13	U	0.20		0.25	08/29/12	09/19/12
Thorium 234	1.4	U	1.2		6.5	08/29/12	09/19/12
Uranium 235	0.17	U	0.92		1.5	08/29/12	09/19/12
Uranium 238	1.4	U	1.2		6.5	08/29/12	09/19/12

NOTE (S)

Data are incomplete without the case narrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC.

Client Sample ID: SOUTH 5 DUP

Radiochemistry

Lab Sample ID: F2H270452-021X

Work Order:

Matrix:

Uranium 238

MWA9E SOLID

1.2

U

3.5

Date Collected:

07/31/12 1620

Date Received:

5.9

08/27/12 0925

Parameter	Result	Qual	Total Uncert. (2 g+/-)	RL	mdo	Prep Date	Analysis Date
Gamma Ra-226 & Hi	ts By EML GA-	01-R MOD	p	Ci/g	Batch #	2242093	Yld %
Actinium 227	0.04	U	0.12		1.5	08/29/12	09/19/12
Actinium 228	0.82		0.46		0.70	08/29/12	09/19/12
Bismuth 212	0.0	U	0.65		1.6	08/29/12	09/19/12
Bismuth 214	34.8		3.7		0.4	08/29/12	09/19/12
Lead 210	26.4		5.6		5.6	08/29/12	09/19/12
Lead 212	0.72		0.25		0.36	08/29/12	09/19/12
Lead 214	37.0		3.9		0.5	08/29/12	09/19/12
Potassium 40	19.8		3.2		1.8	08/29/12	09/19/12
Protactinium 231	1.4	ū	3.7		6.1	08/29/12	09/19/12
Radium (226)	34.8		3.7	1.0	0.4	08/29/12	09/19/12
Radium 228	0.82		0.46		0.70	08/29/12	09/19/12
Thallium 208	0.12	U	0.18		0.24	08/29/12	09/19/12
Thorium 234	1.2	U	3.5		5.9	08/29/12	09/19/12
Uranium 235	-0.27	U	0.88		1.5	08/29/12	09/19/12

Data are incomplete without the case narrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC.

Result is less than the sample detection limit.

08/29/12 09/19/12

Client Sample ID: WEST A

Radiochemistry

Lab Sample ID: F2H270452-022

Work Order:

Matrix:

MWA9F SOLID Date Collected: Date Received:

08/01/12 1112

08/27/12 0925

Parameter	Result	Qual	Total Uncert. (2 g+/-)	RL	mdc	Prep Date	Analysis Date
Gamma Ra-226 & Hi	ts By EML GA-	01-R MOD	p	Ci/g	Batch #	2242093	Yld %
Actinium 227	-0.35	U	0.53		0.87	08/29/12	09/19/12
Actinium 228	0.52		0.20		0.30	08/29/12	09/19/12
Bismuth 212	0.54	U	0.44		0.68	08/29/12	09/19/12
Bismuth 214	5.33		0.64		0.17	08/29/12	09/19/12
Lead 210	2.9		1.8		2.8	08/29/12	09/19/12
Lead 212	0.73		0.16		0.16	08/29/12	09/19/12
Lead 214	5.87		0.68		0.18	08/29/12	09/19/12
Potassium 40	21.9		2.9		0.7	08/29/12	09/19/12
Protactinium 231	0.90	U	0.91		1.8	08/29/12	09/19/12
Radium (226)	5.33		0.64	1.00	0.17	08/29/12	09/19/12
Radium 228	0.52		0.20		0.30	08/29/12	09/19/12
Thallium 208	0.280		0.077		0.062	08/29/12	09/19/12
Thorium 234	0.9	U	1.7		2.8	08/29/12	09/19/12
Uranium 235	0.17	U	0.43		0.72	08/29/12	09/19/12
Uranium 238	0.9	U	1.7		2.8	08/29/12	09/19/12

NOTE (S)

Data are incomplete without the case narrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC.

Client Sample ID: WEST B

Radiochemistry

Lab Sample ID: F2H270452-023

Matrix:

MWA9G

Work Order: SOLID Date Collected: Date Received:

08/01/12 1114

08/27/12 0925

Parameter	Result	Qual	Total Uncert. (2 g+/-)	RL	mdc	Prep Date	Analysis Date
Gamma Ra-226 & Hi	ts By EML GA-	01-R MOD	p	Ci/g	Batch #	2242093	Yld %
Actinium 227	0.37		0.15		0.13	08/29/12	09/19/12
Actinium 228	0.65		0.17		0.18	08/29/12	09/19/12
Bismuth 212	0.29	U	0.35		0.57	08/29/12	09/19/12
Bismuth 214	0.77		0.17		0.11	08/29/12	09/19/12
Lead 210	1.6	U	1.5		2.0	08/29/12	09/19/12
Lead 212	0.68		0.14		0.11	08/29/12	09/19/12
Lead 214	0.91		0.18		0.12	08/29/12	09/19/12
Potassium 40	21.4		3.0		0.6	08/29/12	09/19/12
Protactinium 231	0.57	U	0.54		1.9	08/29/12	09/19/12
Radium (226)	0.77		0.17	1.00	0.11	08/29/12	09/19/12
Radium 228	0.65		0.17		0.18	08/29/12	09/19/12
Thallium 208	0.196		0.068		0.067	08/29/12	09/19/12
Thorium 234	0.8	U	1.0		1.7	08/29/12	09/19/12
Uranium 235	0.20	U.	0.25		0.43	08/29/12	09/19/12
Uranium 238	0.8	U	1.0		1.7	08/29/12	09/19/12

NOTE (S)

Data are incomplete without the case narrative.

Client Sample ID: WEST D

Radiochemistry

Lab Sample ID: F2H270452-024

Work Order: Matrix:

MWA9H SOLID Date Collected: Date Received:

08/01/12 1120

08/27/12 0925

			Total Uncert.			Prep	Analysis
Parameter	Result	Qual	(2 σ+/-)	RL	mdc	Date	Date
Gamma Ra-226 & Hit	ts By EML GA-	01-R MOD	po	Ci/g	Batch #	2242093	Yld %
Actinium 227	0.0	U	0.27		1.2	08/29/12	09/19/12
Actinium 228	0.99		0.24		0.22	08/29/12	09/19/12
Bismuth 212	0.12	U	0.46		0.79	08/29/12	09/19/12
Bismuth 214	2.38		0.35		0.14	08/29/12	09/19/12
Lead 210	5.0		2.4		2.7	08/29/12	09/19/12
Lead 212	0.74		0.16		0.16	08/29/12	09/19/12
Lead 214	2.48		0.34		0.16	08/29/12	09/19/12
Potassium 40	21.7		3.0		1.0	08/29/12	09/19/12
Protactinium 231	0.50	U	0.45		2.4	08/29/12	09/19/12
Radium (226)	2.38		0.35	1.00	0.14	08/29/12	09/19/12
Radium 228	0.99		0.24		0.22	08/29/12	09/19/12
Thallium 208	0.281		0.082		0.078	08/29/12	09/19/12
Thorium 234	1.8	U	1.6		2.1	08/29/12	09/19/12
Uranium 235	0.09	υ	0.24		0.62	08/29/12	09/19/12
Uranium 238	1.8	U	1.6		2.1	08/29/12	09/19/12

NOTE (S)

Data are incomplete without the case narrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC.

Client Sample ID: WEST E

Radiochemistry

Lab Sample ID: F2H270452-025 Work Order:

Matrix:

MWA9J

SOLID

Date Collected: Date Received:

08/01/12 1127

08/27/12 0925

Parameter	Result	Qual	Total Uncert. (2 g+/-)	RL	mdc	Prep Date	Analysis Date
Gamma Ra-226 & Hi	ts By EML GA-	01-R MOD	p	Ci/g	Batch #	2242093	Yld %
Actinium 227	-0.39	U	0.52		0.84	08/29/12	09/19/12
Actinium 228	0.68		0.25		0.33	08/29/12	09/19/12
Bismuth 212	0.27	U	0.44		0.74	08/29/12	09/19/12
Bismuth 214	4.69		0.60		0.18	08/29/12	09/19/12
Lead 210	5.7		2.2		2.8	08/29/12	09/19/12
Lead 212	0.70		0.20		0.18	08/29/12	09/19/12
Lead 214	4.85		0.72		0.24	08/29/12	09/19/12
Potassium 40	22.7		3.1		0.8	08/29/12	09/19/12
Protactinium 231	0.4	U	1.2		3.0	08/29/12	09/19/12
Radium (226)	4.69		0.60	1.00	0.18	08/29/12	09/19/12
Radium 228	0.68		0.25		0.33	08/29/12	09/19/12
Thallium 208	0.26		0.12		0.12	08/29/12	09/19/12
Thorium 234	0.84	U	0.67		3.2	08/29/12	09/19/12
Uranium 235	0.24	U	0.45		0.70	08/29/12	09/19/12
Uranium 238	0.84	U	0.67		3.2	08/29/12	09/19/12

Data are incomplete without the case narrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC.

Result is less than the sample detection limit.

Client Sample ID: WEST C

Radiochemistry

Lab Sample ID: F2H270452-026

Work Order:

Matrix:

MWA9K SOLID Date Collected: Date Received:

08/01/12 1124

08/27/12 0925

Parameter	Result	Qual	Total Uncert.	RL		Prep Date	Analysis Date
			(2 5+/-)		mdc		
Gamma Ra-226 & Hits By EML GA-01-R MOD		pCi/g		Batch # 2242093		Yld %	
Actinium 227	-0.43	U	0.42		0.68	08/29/12	09/19/12
Actinium 228	0.81		0.26		0.27	08/29/12	09/19/12
Bismuth 212	0.82		0.41		0.41	08/29/12	09/19/12
Bismuth 214	1.32		0.25		0.16	08/29/12	09/19/12
Lead 210	1.2	σ	1.3		2.0	08/29/12	09/19/12
Lead 212	0.61		0.13		0.12	08/29/12	09/19/12
Lead 214	1.37		0.21		0.13	08/29/12	09/19/12
Potassium 40	19.4		2.7		0.6	08/29/12	09/19/12
Protactinium 231	0.49	U	0.64		2.0	08/29/12	09/19/12
Radium (226)	1.32		0.25	1.00	0.16	08/29/12	09/19/12
Radium 228	0.81		0.26		0.27	08/29/12	09/19/12
Thallium 208	0.243		0.096		0.085	08/29/12	09/19/12
Thorium 234	1.1	U	1.5		2.0	08/29/12	09/19/12
Uranium 235	-0.02	U	0.11		0.51	08/29/12	09/19/12
Uranium 238	1.1	U	1.5		2.0	08/29/12	09/19/12

NOTE (S)

Data are incomplete without the case narrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC.

Client Sample ID: WEST F

Radiochemistry

Lab Sample ID: F2H270452-027

Work Order:

Matrix:

MWA9L SOLID Date Collected: Date Received:

08/01/12 1130

08/27/12 0925

Parameter	Result	Qual	Total Uncert.			Prep Date	Analysis Date
			(2 o+/-)	RL	mda		
Gamma Ra-226 & Hits By EML GA-01-R MOD		pCi/g		Batch # 2242093		Yld %	
Actinium 227	-0.52	U	0.74		1.2	08/29/12	09/19/12
Actinium 228	1.26		0.43		0.25	08/29/12	09/19/12
Bismuth 212	0.78	U	0.65		0.92	08/29/12	09/19/12
Bismuth 214	1.12		0.30		0.21	08/29/12	09/19/12
Lead 210	3.8		2.5		3.6	08/29/12	09/19/12
Lead 212	0.87		0.25		0.23	08/29/12	09/19/12
Lead 214	1.06		0.24		0.21	08/29/12	09/19/12
Potassium 40	10.7		2.8		2.0	08/29/12	09/19/12
Protactinium 231	0.38	U	0.56		3.9	08/29/12	09/19/12
Radium (226)	1.12		0.30	1.00	0.21	08/29/12	09/19/12
Radium 228	1.26		0.43		0.25	08/29/12	09/19/12
Thallium 208	0.27		0.12		0.13	08/29/12	09/19/12
Thorium 234	0.60	U	0.90		2.6	08/29/12	09/19/12
Uranium 235	0.21	U	0.43		0.69	08/29/12	09/19/12
Uranium 238	0.60	U	0.90		2.6	08/29/12	09/19/12

NOTE (S)

Data are incomplete without the case narrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC.

Client Sample ID: NORTH C

Radiochemistry

Lab Sample ID: F2H270452-028

Work Order:

Matrix:

MWA9M SOLID Date Collected: Date Received:

08/01/12 1117

08/27/12 0925

Parameter	Result	Qual	Total Uncert.	RL		Prep Date	Analysis Date
			(2 σ+/-)		mdc		
Gamma Ra-226 & Hits By EML GA-01-R MOD		pCi/g		Batch # 2242093		Yld %	
Actinium 227	-0.24	U	0.70		1.2	08/29/12	09/19/12
Actinium 228	0.71		0.36		0.53	08/29/12	09/19/12
Bismuth 212	0.45	U	0.67		1.1	08/29/12	09/19/12
Bismuth 214	12.0		1.4		0.3	08/29/12	09/19/12
Lead 210	12.5		4.0		4.4	08/29/12	09/19/12
Lead 212	0.64		0.18		0.22	08/29/12	09/19/12
Lead 214	11.5		1.3		0.4	08/29/12	09/19/12
Potassium 40	20.4		3.4		1.5	08/29/12	09/19/12
Protactinium 231	0.19	U	0.48		4.9	08/29/12	09/19/12
Radium (226)	12.0		1.4	1.0	0.3	08/29/12	09/19/12
Radium 228	0.71		0.36		0.53	08/29/12	09/19/12
Thallium 208	0.27		0.14		0.14	08/29/12	09/19/12
Thorium 234	0.07	U	0.20		4.7	08/29/12	09/19/12
Uranium 235	0.09	U	0.53		0.89	08/29/12	09/19/12
Uranium 238	0.07	U	0.20		4.7	08/29/12	09/19/12

Data are incomplete without the case narrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC.

Tetra Tech, EMI (ARRA)

Client Sample ID: NORTH A

Radiochemistry

Lab Sample ID: F2H270452-029

Work Order:

Matrix:

MWA9N SOLID Date Collected: Date Received: 08/01/12 1136

08/27/12 0925

Parameter	Result	Qual	Total Uncert. (2 g+/-)	RL	mdo	Prep Date	Analysis Date
Gamma Ra-226 & Hi	ts By EML GA-	01-R MOD	p	Ci/g	Batch #	2242093	Yld %
Actinium 227	0.08	U	0.15		0.25	08/29/12	09/19/12
Actinium 228	0.97		0.23		0.14	08/29/12	09/19/12
Bismuth 212	0.39	U	0.41		0.65	08/29/12	09/19/12
Bismuth 214	1.0		0.20		0.12	08/29/12	09/19/12
Lead 210	1.9	U	1.7		2.1	08/29/12	09/19/12
Lead 212	0.73		0.14		0.11	08/29/12	09/19/12
Lead 214	1.40		0.24		0.14	08/29/12	09/19/12
Potassium 40	19.5		2.8		0.5	08/29/12	09/19/12
Protactinium 231	0.39	U	0.59		2.0	08/29/12	09/19/12
Radium (226)	1.0		0.20	1.00	0.12	08/29/12	09/19/12
Radium 228	0.97		0.23		0.14	08/29/12	09/19/12
Thallium 208	0.322		0.084		0.059	08/29/12	09/19/12
Thorium 234	1.5	U	1.1		1.5	08/29/12	09/19/12
Uranium 235	0.06	U	0.22		0.37	08/29/12	09/19/12
Uranium 238	1.5	U	1.1		1.5	08/29/12	09/19/12

NOTE (S)

Data are incomplete without the case narrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC.

Result is less than the sample detection limit.

Tetra Tech, EMI (ARRA)

Client Sample ID: NORTH B

Radiochemistry

Lab Sample ID: F2H270452-030

Work Order:

Matrix:

MWA9P SOLID Date Collected: Date Received: 08/01/12 1142

08/27/12 0925

			Total Uncert.			Prep	Analysis
Parameter	Result	Qual	(2 σ+/-)	RL	mdc	Date	Date
Gamma Ra-226 & Hi	ts By EML GA-	01-R MOD	p	Ci/g	Batch	# 2242093	Yld %
Actinium 227	0.09	U	0.17		0.75	08/29/12	09/19/12
Actinium 228	0.76		0.24		0.14	08/29/12	09/19/12
Bismuth 212	0.24	U	0.39		0.67	08/29/12	09/19/12
Bismuth 214	0.88		0.20		0.11	08/29/12	09/19/12
Lead 210	1.6	U	1.4		2.3	08/29/12	09/19/12
Lead 212	0.70		0.14		0.12	08/29/12	09/19/12
Lead 214	1.04		0.20		0.09	08/29/12	09/19/12
Potassium 40	19.5		3.0		0.9	08/29/12	09/19/12
Protactinium 231	0.6	U	1.1		1.9	08/29/12	09/19/12
Radium (226)	0.88		0.20	1.00	0.11	08/29/12	09/19/12
Radium 228	0.76		0.24		0.14	08/29/12	09/19/12
Thallium 208	0.243		0.070		0.047	08/29/12	09/19/12
Thorium 234	0.50	U	0.71		2.3	08/29/12	09/19/12
Uranium 235	0.07	U	0.26		0.45	08/29/12	09/19/12
Uranium 238	0.50	U	0.71		2.3	08/29/12	09/19/12

Data are incomplete without the case narrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC.

Result is less than the sample detection limit.

METHOD BLANK REPORT

Radiochemistry

Client Lot ID:

F2H270452

Matrix:

SOLID

Parameter	Result	Qual	Total Uncert. (2 σ +/-)	RL	MDC		Prep Date	Lab Sample ID Analysis Date
Gamma Ra-226 & Hits	By EML	GA-01-R MOD	pCi/g	Batch #	2242093	Yld %	F	2H290000-093B
Actinium 227	0.07	ū	0.14		0.43		08/29/12	09/19/12
Actinium 228	0.0	U	0.066		0.37		08/29/12	09/19/12
Bismuth 212	0.0	U	0.096		0.52		08/29/12	09/19/12
Bismuth 214	-0.02	U	0.17		0.20		08/29/12	09/19/12
Lead 210	1.8	U	1.3		2.2		08/29/12	09/19/12
Lead 212	0.022	U	0.064		0.12		08/29/12	09/19/12
Lead 214	-0.006	U	0.013		0.18		08/29/12	09/19/12
Potassium 40	0.15	U	0.29		0.67		08/29/12	09/19/12
Protactinium 231	-0.12	U	0.69		1.3		08/29/12	09/19/12
Radium (226)	-0.02	U	0.17	1.00	0.20		08/29/12	09/19/12
Radium 228	0.0	U	0.066		0.37		08/29/12	09/19/12
Thallium 208	0.011	U	0.059		0.082		08/29/12	09/19/12
Thorium 234	0.35	O	0.48		1.7		08/29/12	09/19/12
Uranium 235	0.001	U	0.025		0.33		08/29/12	09/19/12
Uranium 238	0.35	υ	0.48		1.7		08/29/12	09/19/12
Gamma Ra-226 & Hits	By EML	GA-01-R MOD	pCi/g	Batch #	2243081	Yld %	F	2н300000-081в
Actinium 227	0.009	U	0.096		0.30		08/29/12	09/19/12
Actinium 228	0.019	U	0.087		0.19		08/29/12	09/19/12
Bismuth 212	0.11	U	0.19		0.34		08/29/12	09/19/12
Bismuth 214	0.077	U	0.091		0.12		08/29/12	09/19/12
Lead 210	-0.02	U	0.72		1.5		08/29/12	09/19/12
Lead 212	0.001	U	0.037		0.076		08/29/12	09/19/12
Lead 214	0.077	U	0.061		0.089		08/29/12	09/19/12
Potassium 40	-0.2	U	8.4		1.5		08/29/12	09/19/12
Protactinium 231	-0.23	U	0.70		1.2		08/29/12	09/19/12
Radium (226)	0.077	U	0.091	1.00	0.12		08/29/12	09/19/12
110000000000000000000000000000000000000	0.019	υ	0.087		0.19		08/29/12	09/19/12
Radium 228	0.019				0.053		08/29/12	09/19/12
The State of the S	-0.002	U	0.026		V. 033		00/53/15	02/12/16
Radium 228		U	0.026		0.93		08/29/12	
Radium 228 Thallium 208	-0.002	.677	7.47					09/19/12

NOTE (S)

Data are incomplete without the case narrative.

 $\ensuremath{\mathtt{MDC}}$ is determined using instrument performance only Bold results are greater than the $\ensuremath{\mathtt{MDC}}$.

Laboratory Control Sample Report

Radiochemistry

Client Lot ID:

F2H270452

Matrix:

SOLID

			Total		Lab	Sample ID
Parameter	Spike Amount	Result	Uncert. (2 g+/-)	MDC	% Yld % Rec	QC Control Limits
Gamma Ra-226 & Hit	s By EML GA-01	-R MOD	pCi/g	GA-01-R MOD	F2H2	90000-093C
Radium (226)	12.2	11.7	1.5	0.5	96	(73 - 107)
Thorium 232	9.50	9.9	1.6	0.9	104	(82 - 126)
	Batch #:	2242093		Analysis Date:	09/19/12	
Gamma Ra-226 & Hit	s By EML GA-01	-R MOD	pCi/g	GA-01-R MOD	F2H3	00000-081C
Radium (226)	12.2	11.6	1.5	0.4	95	(73 - 107)
Thorium 232	9.50	9.6	1.3	0.7	101	(82 - 126)
	Batch #:	2243081		Analysis Date:	09/19/12	

DUPLICATE EVALUATION REPORT

Radiochemistry

Client Lot ID:

F2H270452

Date Sampled:

08/04/12

Matrix:

SOLID

Date Received: 08/27/12

	SAMPLE		Total Uncert.		DUPLICA	TE	Total Uncert.		QC Sample ID	
Parameter	Result		(2 \sigma +/-)	% Yld	Result		(2 g+/-)	% Yld	Precis	ion
Gamma Ra-226 & Hit	s By EML	GA-01-	R MOD	pCi/g	GA-0	1-R	MOD		F2H270452-0	01
Actinium 227	0.09	U	0.24		-0.35	U	0.60		328	%RPD
Actinium 228	0.59		0.19		0.65		0.21		9	%RPD
Bismuth 212	0.22	U	0.30		0.0	U	0.46		200	%RPD
Bismuth 214	0.69		0.16		0.75		0.22		8	%RPD
Lead 210	2.5		1.2		1	U	1.6		88	%RPD
Lead 212	0.50		0.11		0.49		0.18		2	%RPD
Lead 214	0.62		0.16		0.91		0.20		39	%RPD
Potassium 40	17.0		2.4		16.5		3.0		3	%RPD
Protactinium 231	0.39	U	0.52		0.0	U	1.2		200	%RPD
Radium (226)	0.69		0.16		0.75		0.22		8	%RPD
Radium 228	0.59		0.19		0.65		0.21		9	%RPI
Thallium 208	0.120		0.055		0.173		0.078		37	%RPI
Thorium 234	0.33	U	0.39		0.7	U	1.4		77	%RPD
Uranium 235	0.12	U	0.22		0.15	U	0.26		23	%RPI
Uranium 238	0.33	U	0.39		0.7	U	1.4		77	%RPD
	В	atch #:	2243081	(Sample)	2243	081	(Duplicate)			
Gamma Ra-226 & Hit	s By EML	GA-01-	R MOD	pCi/g	GA-0	1-R	MOD		F2H270452-0	21
Actinium 227	-0.6	U	1.0		0.04	U	0.12		226	%RPI
Actinium 228	0.90		0.44		0.82		0.46		10	%RPI
Bismuth 212	1.02	U	0.87		0.0	U	0.65		200	%RPI
Bismuth 214	35.2		3.8		34.8		3.7		1	%RPI
Lead 210	21.8		5.5		26.4		5.6		19	%RPI
Lead 212	0.79		0.26		0.72		0.25		8	%RPI
Lead 214	37.4		4.0		37.0		3.9		1	%RPI
Potassium 40	22.2		3.6		19.8		3.2		12	%RPI
Protactinium 231	0.7	U	2.7		1.4	U	3.7		67	%RPI
Radium (226)	35.2		3.8		34.8		3.7		1	%RPI
Radium 228	0.90		0.44		0.82		0.46		10	%RPI
Thallium 208	0.13	U	0.20		0.12	U	0.18		5	%RPI
Thorium 234	1.4	U	1.2		1.2	U	3.5		17	%RPI
Uranium 235	0.17	U	0.92		-0.27	U	0.88		907	%RPI
Uranium 238	1.4	U	1.2		1.2	U	3.5		17	%RPI
	В	atch #:	2242093	(Sample)	2242	093	(Duplicate)			

NOTE (S)

Data are incomplete without the case narrative.

Calculations are performed before rounding to avoid round-off error in calculated results

CLIENT ANALYSIS SUMMARY

Storage Loc:

RAD

Project Manager: EKS

Quote #: 90680

SDG:

Date Received:

2012-08-27

Project:

Radiation - Standard Precision

Analytical Due Date:

2012-09-24

PO#

Report to: Emlly Fisher

Report Due Date:

2012-09-26

Client:

Tetra Tech, EMI (ARRA) 3333030

#SMPS In LOT: 0

Report Type: B EDD Code; 00 Standard Report

SAMPL	E#	CLIE	NT SAMPI	LE ID	Site II	2	Client Matrix D	ATE/T	ME SAMPLED	WORKORDER	Δ
		REF-					20	12-08-	04/923	MWA8P S	OLID
SAMPL	ECC	MME	NTS:	-							
XX :	ZV		RAD	SOLID, RAD		RA	IN-HOUSE RAD	01	STANDARD TEST SET	PROT: A WRK	06
xx	0В	EML	GA-01-R MOD	SCREEN SOLID, GA-01-R MOD, Ra-226 & Hits	Gamma	J9	SCREEN Dry, Grind, and Fill Geometry >> 21 day in-growth	01	STANDARD TEST SET	PROT: R WRK	06
AMPL	E#	CLIE	NT SAMP	LE ID	Site II	2	Client Matrix	ATE/T	IME SAMPLED	WORKORDER	Α
		REF-2	2				20	12-08-	04/925	MWA8Q S	OLID
SAMPL	ECC	MME	NTS:								
XX	ZV		RAD SCREEN	SOLID, RAD SCREEN		RA	IN-HOUSE RAD SCREEN	01	STANDARD TEST SET	PROT: A WRK	06
XX	0B	EML	GA-01-R MOD	SOLID, GA-01-R MOD, Re-226 & Hita	Gamma	19	Dry, Grind, and Fill Geometry -> 21 day in-growth	01	STANDARD TEST SET	PROT: R WRK	06
MPL	E#	CLIE	NT SAMP	LEID	Site II	2	Client Matrix	ATE/T	IME SAMPLED	WORKORDER	Α
		REF-	3				20	12-08-	04/927	MWA8R S	OLID
SAMPL	ECC							100	7		
XX	and the last		RAD	SOLID, RAD		RA	IN-HOUSE RAD	01	STANDARD TEST SET	PROT: A WRK	06
xx	0В	EMI.	SCREEN GA-01-R MOD	SCREEN SOLID, GA-01-R MOD, Ra-225 & Hils	Gamma	J9	SCREEN Dry, Grind, and Fill Geometry -> 21 day In-growth	01	STANDARD TEST SET	PROT: R WRK	06
SAMPL	E#	CLIE	NT SAMP	LEID	Site II	0	Client Matrix	DATE/T	IME SAMPLED	WORKORDER	Α
1		REF-	1				20	12-08-	04/929	MWA8T S	OLID
SAMPL	EC	MME	NTS:								
XX	ZV		RAD SCREEN	SOLID, RAD SCREEN		RA	IN-HOUSE RAD SCREEN	01	STANDARD TEST SET	PROT: A WRK	06
XX	0B	EML	GA-01-R MOD	SOLID, GA-01-R MOD, Ra-226 & Hits	Gamma	J9	Dry, Grind, and Fill Geometry -> 2: day in-growth	01	STANDARD TEST SET	PROT; R WRK	06
SAMPL	E#	CLIE	NT SAMP	LEID	Site	0	Client Matrix	DATE/T	IME SAMPLED	WORKORDER	Α
5		REF-	5				20	012-08-	04/932	MWA8V S	OLID
SAMPL	EC										
XX	ZV		RAD SCREEN	SOLID, RAD SCREEN		RA	IN-HOUSE RAD SCREEN	01	STANDARD TEST SET	PROT: A WRK	06
XX	0B	EMI.	GA-01-R MOD	SOLID, GA-01-R MOD, Ro-226 & Hits	Gamma	Jo	Dry, Grind, and Fill Geometry -> 2' day in-growth	01	STANDARD TEST SET	PROT: R WRK	06
SAMPL	E#	CLIE	NT SAMP	LEID	Site	D	Client Matrix	DATE/T	IME SAMPLED	WORKORDER	Α
6		REF-	3				2	012-08-	04/934	MWA8W S	OLID
SAMPL	EC	OMME	NTS:								
XX	ZV		RAD	SOLID, RAD SCREEN		RA	IN-HOUSE RAD SCREEN	01	STANDARD TEST SET	PROT: A WRK	06
XX	0B	EML	9A-01-R MOD	SOLID, GA-01-R MOD, Re-226 & Hils	Gainma	J9	Dry, Grind, and Fill Geometry -> 2 day in-growth	01	STANDARD TEST SET	PROT: R WRK	06
SAMPL	E#	CLIE	NT SAMP	LEID	Site	D	Client Matrix I	DATE/T	IME SAMPLED	WORKORDER	Δ
7	10	REF-	7				2	012-08-	04/937	MWA8X S	OLID
SAMPL	EC										
XX	Serve	-	RAD	SOLID, RAD		RA	IN-HOUSE RAD	01	STANDARD TEST SET	PROT: A WRK	06
vv		FMI	SOREEN GA-01-R	SCREEN SOLID, GA-01-R MOD.	Gamma	10	SCREEN Dry. Grind, and Fill Geometry -> 2	1 01	STANDARD TEST SET	PROT-R WRK	ng.

XX 0B

GA-01-R MOD

SOLID, GA-01-R MOD, Gamma Re-226 & Hits

19

Dry, Grind, and Fill Geometry -> 21 day in-growth

STANDARD TEST SET

WRK 06

PROT: R

Project:

PO#;

Client:

Project Manager: EKS

3333030

CLIENT ANALYSIS SUMMARY

SDG:

Quote #: 90680

Tetra Tech, EMI (ARRA)

Radiation - Standard Precision

Report to: Emily Fisher

Storage Loc:

Date Received:

2012-08-27

Analytical Due Date:

2012-09-24

Report Due Date:

2012-09-26

Report Type: B EDD Code: 00 Standard Report

#SMP	Sin	LOT:	0	

SAMPI 3		PIPE #	NT SAMPL #1	EID SI	te ID	Client Matrix		FIME SAMPLED 1-03 / 1406	WORKORDER MWA80 S	A OLID
SAMPL	LECC	MMEI	VTS:					e out the first of the first	2000 W 32-3	70.7165
XX	ZV	500000000000000000000000000000000000000	RAD	SOLID, RAD	RA	IN-HOUSE RAD	01	BTANDARD TEST SET	PROT: A WRK	06
xx	0B	EML	SCREEN GA-01-R MOD	SCREEN SOLID, GA-01-R MOD, Gem Re-226 & Hits	ma J9	SCREEN Dry, Grind, and Fill Geometry -> day In-growth	21 01	STANDARD TEST SET	PROT:R WRK	08
SAMPI	LE#	CLIE	YT SAMPL	EID S	Ite ID	Cilent Matrix	DATE/	TIME SAMPLED	WORKORDER	Α
9		PIPE 1	<i>f</i> 6				2012-08	1-03 / 1530	MWA81 S	OLID
SAMPL	LE CO	OMME	VTS:							
XX	ZV		RAD SCREEN	SOLID, RAD SCREEN	RA	IN-HOUSE RAD SCREEN	01	STANDARD TEST SET	PROT: A WRK	06
XX	OB	EML	GA-01-R MOD	SOLID, GA-01-R MOD, Gern Ra-226 & Hills	ma J9	Dry, Grind, and Fill Geometry -> day in-growth	21 01	STANDARD TEST SET	PROT: R WRK	06
SAMPI	LE#	CLIE	NT SAMPI	EID S	Ite ID	Client Matrix	DATE/	TIME SAMPLED	WORKORDER	Δ
10		PIPE	¥7				2012-08	3-03 / 1558	MWA82 S	OLID
SAMPI	LE CO	OMME	NTS:							
XX	zv		RAD	SOLID, RAD	RA	IN-HOUSE RAD SCREEN	01	STANDARD TEST SET	PROT: A WRK	06
XX	0B	EML	SCREEN GA-01-R MOD	SCREEN SOLID, GA-01-R MOD, Gam Ra-226 & Hita	ima J9	Dry, Grind, and Fill Geometry -> day in-growth	21 01	STANDARD TEST SET	PROT: R WRK Loc	08
SAMP	LE#	CLIE	NT SAMPI	EID S	Ite ID	Client Matrix	DATE/	TIME SAMPLED	WORKORDER	Δ
11		PIPE	#8				2012-08	3-03 / 1637	MWA83 S	OLID
SAMP	LE CO	DMME	NTS:							
XX	zv		RAD SCREEN	SOLID, RAD	RA	IN-HOUSE RAD SCREEN	01	STANDARD TEST SET	PROT: A WRK	06
XX	0B	EML.	GA-01-R MOD	SCREEN SOLID, GA-01-R MOD, Gam Re-226 & Hills	me J9	Dry, Grind, and Fill Geometry -> day in-growth	21 04	STANDARD TEST SET	PROT: R WRK	06
SAMP	LE#	CLIE	NT SAMPI	EID S	ite ID	Client Matrix	DATE	TIME SAMPLED	WORKORDER	Α
12		PIPE	410				2012-08	3-03 / 1716	MWA84 S	BOLID
SAMP	LE CO	DMME	NTS:							
XX	ZV		RAD SCREEN	SOLID, RAD SCREEN	RA	IN-HOUSE RAD SCREEN	0.	STANDARD TEST SET	PROT: A WRK	06
XX	0B	EML.	QA-01-R MOD	SOLID, GA-01-R MOD, Gam Ra-226 & Hits	та 19	Dry, Grind, and Fill Geometry -> day in-growth	21 0	STANDARD TEST SET	PROT; R WRK	06
SAMP	LE#	CLIE	NT SAMP	LEID S	lte ID	Client Matrix	DATE	TIME SAMPLED	WORKORDER	Δ
13		AREA	3 #1				2012-0	3-03 / 1139	MWA85	BOLID
SAMP	LE C	OMME		The other Land				TOTAL CONTROL	CONTRACTOR CONTRACTOR	100
XX	ZV		SCREEN	SOLID, RAD SOREEN	RA	IN-HOUSE RAD SCREEN	0	STANDARD TEST SET	PROT: A WRK	06
XX	0B	EML	GA-01-R MOD	SOLID, GA-01-R MOD, Garr Re-226 & HRs	ıma J9	Dry, Grind, and Fill Geometry -> day in-growth	21 0	STANDARD TEST SET	PROT; R WRK	06
SAMP	LE#	CLIE	NT SAMP	LE ID S	Ite ID	Client Matrix		TIME SAMPLED	WORKORDER	Α
14		AREA	3 #6				2012-0	8-03/ 1135 54 614	AUIZ MWA86	SOLID
SAMP	LEC	OMME				and a color of the				
XX	ZV		RAD SCREEN	SOLID, RAD SCREEN	RA	IN-HOUSE RAD SCREEN	0	STANDARD TEST SET	PROT: A WRK	06
XX	08	EML	GA-01-R MOD	SOLID, GA-01-R MOD, Gan Ra-226 & Hils	nma J9	Dry, Grind, and Fill Geometry -: day in-growth	21 0	STANDARD TEST SET	PROT:R WRK	06
ACCRECATION AND ADDRESS OF THE PARTY NAMED IN	-		-			The second secon	The state of the s			

Logged in by:

DANIELSB

TestAmerica - St. Louis

Page 2 of 5

printed on: Monday, August 27, 2012 03:19 PM

CLIENT ANALYSIS SUMMARY

Storage Loc:

RAD

Project Manager: EKS

Quote #: 90680

Date Received:

Report Due Date:

2012-08-27

Project:

Radiation - Standard Precision

Analytical Due Date:

2012-09-24

PO#:

Report to: Emily Fisher

Report Type: B

2012-09-26

Client:

3333030 Tetra Tech, EMI (ARRA)

#SMPS In LOT: 0

EDD Code: 00

Standard Report

15 SAME	NEC	8 45 507	A 3 #7R ENTS:					2012-08	3-03 / 1717	MWAB	7 S	OLID
	ZV	Olyllylis	RAD SCREEN	SOLID, RAD SCREEN		RA	IN-HOUSE RAD SCREEN	01	STANDARD TEST SET	PROT: A	WRK	06
XX	0B	EML	GA-01-R MOD	SOLID, GA-01-F Ra-226 & Hits	R MOD, Gamme	19	Dry, Grind, and Fill Geometry ⇒ day In-growth	-21 01	STANDARD TEST SET	PROT:R	WRK	06
SAME	LE#	CLIE	ENT SAMP	LE ID	Site	D	Olient Matrix	DATE/	TIME SAMPLED	WORKO	RDER	Α

16		AREA	11			20	12-08-	03 / 1726	MWA8	8 S	OLID
SAME	LEC	OMME	NTS:				11				
XX	ZV		RAD SCREEN	SOLID, RAD SCREEN	RA	IN-HOUSE RAD , SCREEN	01	STANDARD TEST SET	PROT: A	WRK	06
XX	0B	EML	GA-01-R	SOLID, GA-01-R MOD, Gamma	19	Dry, Grind, and Fill Geometry > 21	01	STANDARD TEST SET	PROT: R	WRK	06

-	THOSE THE EAST OF THE		out in grown		H)	20
SAMPLE #	CLIENT SAMPLE ID	Site ID	Client Matrix	DATE/TIME SAMPLED	WORKORDE	RA
17	AREA 5			2012-08-01 / 1704	MWA89	SOLID
SAMPLEC	COMMENTS:					

SAMP	LE C	OMME	NTS:								
XX	ZV	RAD SCREEN	SOLID, RAD SCREEN	RA	IN-HOUSE RAD SCREEN	01	STANDARD TEST SET	PROT: A	WRK	06	
XX	0B	EML	GA-01-R MOD	SOLID, GA-01-R MOD, Gamma Ra-226 & Hills	19	Dry, Grind, and Fill Geometry -> 21 day in-growth	01	STANDARD TEST SET	PROT: R	WRK	06

SAMPLE	SAMPLE # CLIENT SAMPLE ID			Client Matrix	DATE/T	IME SAMPLED	WORKOF	RDER A
18	AREA 6#3		3, 1		2012-08-	02 / 1000	MWA9	A SOLID
SAMPLE	COMMENTS:							
XX ZV	RAD SCREEN	SOLID, RAD SCREEN	RA	IN-HOUSE RAD SCREEN	01	STANDARD TEST SET	PROT: A	WRK 06

XX OE	EML	GA-01-R MOD	SOLID, GA-01-R MOD, Game Ro-226 & Hile	na J 9	Dry, Grind, and Fill Geometry > 21 day in-growth	01 STANDARD TEST SET	PROT: R	WRK Q6
SAMPLE	# CLI	ENT SAMP	PLE ID SI	e ID	Client Matrix DA	ATE/TIME SAMPLED	WORKORD	ER A
19	SOU	TH 3			201	12-07-31 / 1615	MWA9C	SOLID
SAMPLE	COMM	ENTS:						

	AMPLE# CLIENT SAMPLE ID	Site ID Client Matrix	DATE/	TIME SAMPLED	WORKO	RDER	A
OUNCEN GOVERN CONTENT			y → 21 01	STANDARD TEST SET	PROT: R		06
XX ZV RAD SOLID, RAD RA IN-HOUSE RAD 01 STANDARD TEST SET PROT; A WRK	XX ZV RAD SOLID, RAD SCREEN SCREEN	RA IN-HOUSE RAD SCREEN	01	STANDARD TEST SET	PROT: A	WRK	06

20		SOU	TH 4			201	2-07-	31 / 1608	MWA91	0 9	OLID
SAMP	LEC	OMME	NTS:								
XX	zv		RAD SCREEN	SOLID, RAD SOREEN	RA	IN-HOUSE RAD SCREEN	01	STANDARD TEST SET	PROT: A	WRK	06
XX	0B	EML	GA-01-R MOD	SOLID, GA-01-R MOD, Gamma Rs-226 & Hills	19	Dry, Grind, and Fill Geometry -> 21 day in-growth	01	STANDARD TEST SET	PROT: R	WRK	06

SAME	LE#	CLI	ENT SAMP	LE ID Site	ID	Client Matrix	DATE/I	IME SAMPLED	WORKOR	DER	Δ	
21		SOU	TH 5			2	012-07-	31 / 1620	MWA9I	5	OLID	
SAME	LE C	OMME	ENTS:									
XX	ZV		RAD	SOLID, RAD SCREEN	RA	IN-HOUSE RAD SCREEN	01	STANDARD TEST SET	PROT: A	WRK	06	
XX	0B	EML	GA-01-R MOD	SOLID, GA-01-R MOD, Gemma Re-226 & Hills	19	Dry, Grind, and Fill Geometry -> 2 day in-growth	1 01	STANDARD TEST SET	PROT: R	WRK	06	

Client Matrix

TestAmerica - St. Louis

SAMPLE # CLIENT SAMPLE ID

Logged In by:

DANIELSB 2012-08-27

Site ID

14:09:52

printed on: Monday, August 27, 2012 03:19 PM

DATE/TIME SAMPLED

Page 3 of 6

WORKORDER A

CLIENT ANALYSIS SUMMARY

Storage Loc:

RAD

Project Manager: EKS

Quote #: 90680

SDG:

Date Received:

2012-08-27

Project:

Radiation - Standard Precision

Analytical Due Date: Report Due Date:

2012-09-24

PO#:

Report to: Emily Fisher

Report Type: B

2012-09-26 Standard Report

Client:

3333030 Tetra Tech, EMI (ARRA)

#SMPS In LOT: 0

EDD Code: 00

22 SAMP		WEST				2	012-08-	01 / 1112	MWA9F	SOLID
XX			RAD	SOLID, RAD	RA	IN-HOUSE RAD	01	STANDARD TEST SET	PROT: A WRI	
XX	0B	EML	SCREEN GA-01-R MOD .	SCREEN SOLID, GA-01-R MOD, Gamma- Ra-226 & Hits	na J9	SCREEN Dry, Grind, and Fill Geometry > 2 day in-growth	1 01	STANDARD TEST SET	PROT; R WRI	06
SAMP	LE#	CLIE	NT SAMPL	EID SI	te ID	Client Matrix	DATE/T	IME SAMPLED	WORKORDER	Δ
23		WEST	ГВ			2	012-08-	01/1114	MWA9G	SOLID
SAMP	LE C	OMME	NTS:							
XX	ZV		RAD SCREEN	SOLID, RAD SCREEN	RA	IN-HOUSE RAD SCREEN	01	STANDARD TEST SET	PROT: A WR	
XX	013	EML	GA-01-R MOD	SOLID, GA-01-R MOD, Gami Re-228 & Hits	na J9	Dry, Grind, and Fill Geometry -> 2 day in-growth	1 01	STANDARD TEST SET	PROT: R WR	K 06
SAMP	LE#	CLIE	NT SAMPL	EID SI	te ID	Client Matrix	DATE/T	IME SAMPLED	WORKORDER	Α
24		WEST	D			2	012-08-	01/ 1120	MWA9H	SOLID
SAMP	LE CO	OMME	NTS:						- 1435 3645	10000000
XX	ZV		RAD SCREEN	SOLID, RAD SCREEN	RA	IN-HOUSE RAD SCREEN	01	STANDARD TEST SET	PROT: A WR	06
XX	0B	EML	GA-01-R MOD	SOLID, GA-01-R MOD, Gami Rs-226 & Hils	na J9	Dry, Grind, and Fill Geometry -> 2 day in-growth	1 01	STANDARD TEST SET	PROT: R WR	K 06
SAMP	LE#	CLIE	NT SAMPI	EID SI	te ID	Client Matrix	DATE/T	IME SAMPLED	WORKORDER	Α
25		WEST	r.E			2	012-08-	01/1127	MWA9J	SOLID
SAMP	LE C	OMME	NTS:							
XX	ZV		RAD SCREEN	SOLID, RAD SCREEN	RA	IN-HOUSE RAD SCREEN	01	STANDARD TEST SET	PROTIA WR	
xx	0B	EML	GA-01-R MOD	SOLID, GA-01-R MOD, Game Ra-226 & Filts	na J9	Dry, Grind, and Fill Geometry -> 2 day in-growth	1 01	STANDARD TEST SET	PROT: R WR	K 06
SAMP	LE#	CLIE	NT SAMPL	EID SI	te ID	Client Matrix	DATE/T	IME SAMPLED	WORKORDER	Δ
26		WES.	rc			2	012-08-	01 / 1124	MWA9K	SOLID
SAMP	LE C	OMME	NTS:						000,000,000	
XX	ZV		RAD SCREEN	SOLID, RAD SCREEN	RA	IN-HOUSE RAD SCREEN	01	STANDARD TEST SET	PROT: A WR	
XX	0B	EML	GA-01-R MOD	SOLID, GA-01-R MOD, Gami Ra-226 & Hilts	ma J9	Dry, Grind, and Fill Geometry >> 2 day in-growth	1 01	STANDARD TEST SET	PROT: R WR	K 06
SAMP	LE#	CLIE	NT SAMPI	EID SI	te ID	Client Matrix	DATE/T	IME SAMPLED	WORKORDER	Δ
27		WES.	r F			2	012-08-	01 / 1130	MWA9L	SOLID
SAMP	LEC	ОММЕ	NTS:							
XX	zv		RAD SCREEN	SOLID, RAD SCREEN	RA	IN-HOUSE RAD SCREEN	01	STANDARD TEST SET	PROT: A WR	
XX	0В	EML	GA-01-R MOD	SOLID, GA-01-R MOD, Gam Re-226 & Hills	ma J9	Dry, Grind, and Fill Geometry -> 2 day in-growth	21 01	STANDARD TEST SET	PROT: R WR	K 06
SAMP	LE#	CLIE	NT SAMPI	EID SI	te ID	Client Matrix	DATE/I	IME SAMPLED	WORKORDER	B A
28		NOR	THO			2	2012-08-	01/1117	MWA9M	SOLID
SAMP	LEC	OMME	NTS:							
XX	ZV		RAD	SOLID, RAD SCREEN	RA	IN-HOUSE RAD SCREEN	01	STANDARD TEST SET	PROT; A WA	
XX	0B	EML	GA-01-R MOD	SOLID, GA-01-R MOD, Gam Re-226 & Hits	ma J9	Dry, Grind, and Fill Geometry -> 2 day in-growth	21 01	STANDARD TEST SET	PROT: R WA	K 06
SAMP	LE#	CLIE	NT SAMPI	EID SI	te ID	Cilent Matrix	DATE/I	TIME SAMPLED	WORKORDER	3 A

CLIENT ANALYSIS SUMMARY

Storage Loc:

RAD

Project Manager: EKS

Quote #: 90680

SDG:

Date Received:

2012-08-27

Project:

Radiation - Standard Precision

Analytical Due Date:

2012-09-24

PO#:

Report to: Emily Fisher

Report Due Date:

2012-09-26 Standard Report

Client:

3333030

Tetra Tech, EMI (ARRA)

#SMPS in LOT: 0

Report Type: B

EDD Code: 00

9	NOR"	TH A			20	012-08-	-01/ 1136	MWA9N	l s	OLID
SAMPLE (COMME	NTS:								
XX ZV		RAD SCREEN	SOLID, RAD SCREEN	RA	IN-HOUSE RAD SCREEN	01	STANDARD TEST SET	PROT: A	WRK	06
XX 0B	EML	GA-01-R MOD	SOLID, GA-01-R MOD, Gamma Ra-226 & Hits	J9	Dry, Grind, and Fill Geometry -> 21 day in-growth	1 01	STANDARD TEST SET	PROT: R	WRK	06
SAMPLE ;	Ł CLIE	NT SAMP	LEID Site	ID	Client Metrix D	DATE/I	TIME SAMPLED	WORKOR	DER	Δ
30	NOR'	TH B			20	012-08	-01/1142	MWA9F	9	OLID
SAMPLE	COMME	NTS:								
XX ZV		RAD SCREEN	SOLID, RAD SCREEN	RA	IN-HOUSE RAD SCREEN	01	STANDARD TEST SET	PROT: A	WRK	06
XX 0B	EML	GA-01-R	SOLID, GA-01-R MOD, Gamma	J9	Dry, Grind, and Fill Goometry -> 2: day in-growth	1 01	STANDARD TEST SET	PROT: R	WRK	06

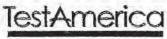
TestAmerica St. Louis CUL 479

13715 Rider Trail North

45 55 Parth City, MO 63045

Chain of Custody Record

THE LEADER IN ENVIRONMENTAL TESTING


Client Contact	Project N	Innama De	L Mr.		lo		w diani-	1
		tattager. Kt	b Monnig		3	lite Contact:	Date: 8/23/17	COC No:
Tetra Tech	Tel/Fax:	816-729-562	1		1	.ab Contact:	Carrier:	
415 Oak Street		Analysis T	urnaround	Time	1			Job No.
Kansas City, MO	Calend	ar(C) or W	ork Days (W	<u> </u>		21-day in gerelly 20-28-6		
(816) 412-1775 Phone		TAT if different	from Below _		Ž.	(Sp		
(xxx) xxx-xxxx FAX Project Name: Ganda W Processor		10	2 weeks		6	1343		SDG No.
Project Name: Gandard Procession Site:	_ =		week			Soun Paris		
	4 5		2 days		2	373		Secretar D. J. J. M. S.
PO# 108 10 244		1	I day			Amrala.		Sampler Robert Mannin
Sample Identification	Sample Date	Sample Time	Sample Type	Matrix	#of Cont.	For Re		Sample Specific Notes:
REF-1 814/12 R	M 8/3/12	0923			1	x		
REF-2	i	2690			i	x		
REF-3		1927			4	x		
REF-4		9929			1	X		
REF-4 REF-5		व्यउभ			1	x		1 - 1
REF-10		0934			,	X		
REF-7 P:p= #1	1	0837			1	x		
P:02 # 1	9/3/12	1405			1	X		
0 #30.9		1S30			1	X		
P.02 #7		1223			1	X		
Prock 8.		1637			1	X		
P:02*1D	14	1716	3-		1	x		
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=	NaOH; 6= Oth	er				F 3 71 41 3 5 11		
Possible Hazard Identification			4				nay be assessed if samples are in Disposal By Lab	
Non-Hazard Flammable Skin Irritant Special Instructions/QC Requirements & Comments:	Poison	B 🗆	Unknown	_		Return To Client	- Disposal By Lab	Archive For Months
F2H277 Inquished for			-					- d
Selinguished by	Company:	Tech		Date/Tin	12 10	Received by:	Company:	Date/Time:
Resinquished by:	Company:	· ital		Date/Tin	ne:	Received by:	Сотралу:	Date/Time: 0925
Relinquished by: Company: Date/Time: F				Received by:	Company:	Date/Time:		

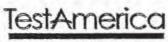
TestAmerica St. Louis

13715 Rider Trail North

60 Earth City, MO 63045

Chain of Custody Record

THE LEADER IN ENVIRONMENTAL TESTING


Mone 314.298.8566 fax 314.298.8757 TestAmerica Laboratories, Inc. Date: 3/23/12 COC No: Client Contact Project Manager: Rob Monnig Site Contact: a of COCs Tetra Tech Tel/Fax: 816-729-5621 Lab Contact: Carrier: 415 Oak Street -Analysis Turnaround Time Job No. Mengari, Kansas City, MO Calendar (C) or Work Days (W) (816) 412-1775 Phone TAT if different from Below SDG No. 3000C-3000 (300X) FAX 2 weeks Project Name: Shandard Precision 1 week 2 days PO# 1076244 Sampler Kalan Manne 1 day Sample Sample Sample Sample Identification Date Sample Specific Notes: Area 3 # 8/3/12 1139 8/3/12/1154 Area 3 #7R 813/12 1717 813/12 1726 Area i Area 5 8/1/12 1704 Area 6#3 8/2/12 1000 South 3 7/31/12 /1815 South 4 7/31/12 1608 7/31/12 1620 8/1/12/11/2 8/1/2 1/14 WEST Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Possible Hazard Identification Poison B Unknown Disposal By Lab Archive For_ Non-Hozard Flammable Skin Irritant Return To Client Months Special Instructions/OC Requirements & Comments: Date/Time: Rec 8/23/12 1600 Company: Date/Time: Tetra Tech Date/Time: 8/27/12 0925 Date/Time: Company: TA Relinquished by: Company: Date/Time: Received by: Company: Date/Time:

TestAmerica St. Louis

13715 Rider Trail North

47 Parth City, MO 63045

Chain of Custody Record

THE LEADER IN ENVIRONMENTAL TESTING

Done 314.298.8566 fax 314.298.8757	18.							TestAmerica Laboratories, Inc.
Client Contact	Project M	anager: Ro	b Monnig			Site Contact:	Date: 8/23/12	COC No:
Tetra Tech	Tel/Fax:	816-729-562	1			Lab Contact:	Carrier:	3 of 3 COCs
415 Oak Street		Analysis T	ornaround	Time				Job No.
Kansas City, MO	Calenda	er(C) or W	ork Days (W)				
(816) 412-1775 Phone		TAT if different	from Below _					
(xxx) xxx-xxxx FAX		1 3	2 weeks			Star Star All fac		SDG No.
Project Name: Standard Pricision						2 3 3 3		
Site:		2 days			- 1	Sa-32		- /\
PO# 10×10244		1	1 day			Sangue 3(Sampler Kalen Mennin
Sample Identification	Sample Date	Time	Sample Type	Matrix	⊈ of Cont.	Chemina Colombia (Nata)		Sample Specific Notes:
West E	8/1/12	1127			1	X		
West C	13/1/12	1124.			1	X		
(DES) F	8/11/17	1130	P.			x		
North C	8/1/12	1117			1	X		
North A	8/1/12	1136			1	X		
North B	8/1/12	1142			1	X	GIZHERBALIS	
		-						
Preservation Used: I= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=N	aOH: 6= Othe	er						
Possible Hazard Identification				11110			y be assessed if samples are retal	
Non-Hazard Flammable Skin Irritant	Paison	B	Unknown			Return To Client	Disposal By Lab Arc.	hive For Months
Special Instructions/QC Requirements & Comments:								
F2H27								nca on
Slinquished by	Company:	Tech		Date/Tin 8/23/	ne: 15	Received by:	Company:	Date/Time:
		a Tech	×1	8/23/	12 10	+ test		
Reproquished by:	Company:			Date/In	oe:	Received by:	Company:	8/22/12 0925
Relinquished by: Company: Date/Time:		Received by:	Company:	Date/Time:				

Corrective Action:		
☐ Client Contact Name;	Informed by:	
☐ Sample(s) processed "as is"		
□ Sample(s) on hold until:	If released, notify:	
Project Management Review: 9103	Date; 919118	
THIS FORM MUST BE COMPLETED AT THE TIME THE ITEMS ARE	BEING CHECKED IN. IF ANY ITEM IS COMPLETED BY SOMEONE	OTHER THAN THE INITIATOR, THEN

THAT PERSON IS REQUIRED TO APPLY THEIR INITIAL AND THE DATE NEXT TO THAT ITEM.

ADMIN-0004 rov13, REVISED 05/27/11 \\Sisvr01\QA\FORMS\ST-LOUIS\ADMIN\Admin-0004 CUR.doc

Tetra Tech, EMI (ARRA)

Client Sample ID: BACKFILL

Radiochemistry

Lab Sample ID: F2G270459-018

Work Order: Matrix:

MVVLA SOLID

Date Collected: Date Received:

07/24/12 1000

07/27/12 0920

To	ta	1	
TITE	20	nh	

Parameter	Result	Qual	(2 g+/-)	RL	mda	Prep Date	Analysis Date
Gamma Ra-226 & Hits By EML GA-01-R MOD			pCi/g		Batch #	2213121	Yld %
Actinium 227	0.07	U	0.12		1.3	07/31/12	08/21/12
Actinium 228	0.94		0.21		0.13	07/31/12	08/21/12
Bismuth 212	0.30	n	0.39		0.66	07/31/12	08/21/12
Bismuth 214	0.89		0.18		0.12	07/31/12	08/21/12
Lead 210	1.4	U	1.7		2.4	07/31/12	08/21/12
Lead 212	0.79		0.16		0.13	07/31/12	08/21/12
Lead 214	0.87		0.16		0.13	07/31/12	08/21/12
Potassium 40	18.1		2.6		0.5	07/31/12	08/21/12
Protactinium 231	0.44	U	0.59		1.8	07/31/12	08/21/42
Radium (226)	0.89		0.18	1.00	0.12	07/31/12	08/21/12
Radium 228	0.94		0.21		0.13	07/31/12	08/21/12
Thallium 208	0.325		0.079		0.057	07/31/12	08/21/12
Thorium 234	0.53	U	0.68		2.2	07/31/12	08/21/12
Uranium 235	0.16	U	0.26		0.48	07/31/12	08/21/12
Uranium 238	0.53	Ü	0.68		2,2	07/31/12	08/21/12

Data are incomplete without the case narrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC.